Effect of Rolling Reduction on Microstructures and Mechanical Properties of Sc-Containing Al-3.2Cu-1.5Li Alloy
Abstract
:1. Introduction
2. Materials and Experiments
3. Results
4. Discussion
5. Conclusions
- (1)
- With an increase in the rolling reduction, regardless of whether the T6 heat treatment was performed or not, the microstructure of the Sc-containing Al-Cu-Li alloy displays substructure characteristics. The volume fraction of the recrystallization of hot-rolled alloys is extremely low and basically remains unchanged, while the recrystallization volume fraction of the T6 treated alloys displays a rising trend on the whole, with values of 2.7%, 1.2%, 9.5% and 11.0%, respectively, as the rolling reduction increases.
- (2)
- The precipitates of the Sc-containing Al-Cu-Li alloys are mainly numerous T1 phases, orthogonal θ’ phases, fine dispersed δ’/β’ phases and a minute quantity of S’ phases. The fine, thermally stable Al3(Sc, Zr) dispersoids that precipitated along the dislocations, subgrain boundaries or high-angle grain boundaries were responsible for the higher recrystallization resistance of the Sc-containing Al-Cu-Li alloys. Additionally, the precipitation of nano-sized Al3(Sc, Zr) particles also remarkably impedes the growth of recrystallized grains during hot rolling and T6 heat treatment.
- (3)
- Compared to the Sc-containing alloys with different rolling reductions, the alloy with a rolling reduction of 81.4% exhibited a better combination of tensile strength (480.4 MPa) and elongation (13.0%) due to grain refinement, precipitation, dispersion and substructure strengthening. As the rolling reduction increases, the strength of the alloys increases first and then decreases, while the elongation gradually increases and then enters a plateau, which is associated with the refined grains and the retention of the substructure characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.-M.; Li, G.-A.; Jiang, J.-T.; Shao, W.-Z.; Zhen, L. Influence of Mg content on ageing precipitation behavior of Al-Cu-Li-x alloys. Mater. Sci. Eng. A 2018, 742, 138–149. [Google Scholar] [CrossRef]
- Liu, D.Y.; Wang, J.X.; Li, J.F.; Ma, Y.L.; Zhang, K.; Zhang, R.F. The effect of Ag element on the microstructure characteristic evolution of an Al-Cu-Li-Mg alloy. J. Mater. Res. Technol. 2020, 9, 11121–11134. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Li, J.-F.; Zhang, R.-Z.; Tang, J.-G.; Huang, C.; Li, H.-Y.; Zheng, Z.-Q. Strength and structure variation of 2195 Al-Li alloy caused by different deformation processes of hot extrusion and cold-rolling. Trans. Nonferrous Met. Soc. China 2020, 30, 835–849. [Google Scholar] [CrossRef]
- Deschamps, A.; Garcia, M.; Chevy, J.; Davo, B.; De Geuser, F. Influence of Mg and Li content on the microstructure evolution of Al Cu Li alloys during long-term ageing. Acta Mater. 2017, 122, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Gumbmann, E.; Lefebvre, W.; De Geuser, F.; Sigli, C.; Deschamps, A. The effect of minor solute additions on the precipitation path of an Al Cu Li alloy. Acta Mater. 2016, 115, 104–114. [Google Scholar] [CrossRef]
- Gumbmann, E.; De Geuser, F.; Sigli, C.; Deschamps, A. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. Acta Mater. 2017, 133, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Pan, Q.L.; Yin, Z.M. Characterization of hot deformation behavior of as-homogenized Al-Cu-Li-Sc-Zr alloy using processing maps. Mater. Sci. Eng. A 2014, 614, 199–206. [Google Scholar] [CrossRef]
- Xie, Y.; Deng, Y.; Wang, Y.; Guo, X. Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy. J. Alloys Compd. 2020, 836, 155445. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Li, J.-F.; Liu, T.-L.; Ma, Y.-L.; Iwaoka, H.; Hirosawa, S.; Zhang, K.; Zhang, R.-F. Microstructure evolution and mechanical properties of Al-Cu-Li alloys with different rolling schedules and subsequent artificial ageing heat treatment. Mater. Charact. 2020, 170, 110676. [Google Scholar] [CrossRef]
- Yang, X.; Huang, W.; Zhu, X.; Guo, F.; Hu, L.; Zhang, R. The effects of precipitates on microstructure and β-fiber texture in an Al-Cu-Li alloy during hot rolling. Mater. Charact. 2020, 162, 110186. [Google Scholar] [CrossRef]
- Ye, F.; Mao, L.; Rong, J.; Zhang, B.; Wei, L.; Wen, S.; Jiao, H.; Wu, S. Influence of different rolling processes on microstructure and strength of the Al–Cu–Li alloy AA2195. Prog. Nat. Sci. 2022, 32, 87–95. [Google Scholar] [CrossRef]
- Medjahed, A.; Moula, H.; Zegaoui, A.; Derradji, M.; Henniche, A.; Wu, R.; Hou, L.; Zhang, J.; Zhang, M. Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy. Mater. Sci. Eng. A 2018, 732, 129–137. [Google Scholar] [CrossRef]
- Kharakterova, M.L. Phase composition of aluminum-copper-scandium alloys at 450 and 500 °C. Metally 1991, 4, 191–194. [Google Scholar]
- Kolobnev, N.I. Aluminum-Lithium Alloys with Scandium. Met. Sci. Heat Treat. 2002, 44, 297–299. [Google Scholar] [CrossRef]
- Jia, M.; Zheng, Z.Q.; Gong, Z. Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization. J. Alloys Compd. 2014, 614, 131–139. [Google Scholar] [CrossRef]
- Jia, M.; Zheng, Z.Q.; Luo, X.F. Influence of AlCuSc Ternary Phase on the Microstructure and Properties of 1469 Alloy. Mater. Sci. Forum 2014, 794–796, 1057–1062. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Wang, J.-X.; Li, J.-F. Microstructures evolution and mechanical properties disparity in 2070 Al-Li alloy with minor Sc addition. Trans. Nonferrous Met. Soc. China 2018, 28, 2151–2161. [Google Scholar] [CrossRef]
- Huang, L.; Huang, J.; Liu, W.; Cao, L.; Li, S. Effect of minor Sc additions on precipitation and mechanical properties of a new Al-Cu-Li alloy under T8 temper. J. Alloys Compd. 2022, 927, 166860. [Google Scholar] [CrossRef]
- Suresh, M.; Sharma, A.; More, A.; Nayan, N.; Suwas, S. Effect of Scandium addition on evolution of microstructure, texture and mechanical properties of thermo-mechanically processed Al-Li alloy AA2195. J. Alloys Compd. 2018, 740, 364–374. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zheng, Z.Q.; Lin, Y.; Xue, X.L.; Luo, X.F.; Zhong, J. Effects of small addition of Sc on microstructure and properties of 2099 Al-Li alloy. J. Cent. South Univ. Sci. Technol. 2014, 45, 1420–1427. (In Chinese) [Google Scholar]
- Peng, Z.-W.; Li, J.-F.; Sang, F.-J.; Chen, Y.-L.; Zhang, X.-H.; Zheng, Z.-Q.; Pan, Q.-L. Structures and tensile properties of Sc-containing 1445 Al-Li alloy sheet. J. Alloys Compd. 2018, 747, 471–483. [Google Scholar] [CrossRef]
- Ma, J.; Yan, D.; Rong, L.; Li, Y. Effect of Sc addition on microstructure and mechanical properties of 1460 alloy. Prog. Nat. Sci. 2014, 24, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Kuang, J.; Liu, G.; Sun, J. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al-Cu alloys during homogenization treatment. Mater. Sci. Eng. A 2018, 746, 11–26. [Google Scholar] [CrossRef]
- Dong, Y.; Ye, L.; Liu, X.; Ke, B.; Hu, T. Effects of large strain pre-deformation on creep age behavior and microstructural evolution of an Al-Cu-Li alloy. Mater. Lett. 2022, 324, 132699. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Ma, X.; Wu, R.; Sun, J.; Hou, L.; Zhang, J.; Li, X.; Zhang, M. Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy. Mater. Charact. 2019, 154, 241–247. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wu, R.; Sun, J.; Jiao, Y.; Hou, L.; Zhang, J.; Li, X.; Zhang, M. Ambient-temperature mechanical properties of isochronally aged 1420-Sc-Zr aluminum alloy. Mater. Sci. Eng. A 2019, 745, 411–419. [Google Scholar] [CrossRef]
- Hallem, H.; Lefebvre, W.; Forbord, B.; Danoix, F. Marthinsen. The formation of Al3(ScxZryHf1-x-y)-dispersoids in aluminium alloys. Mater. Sci. Eng. A 2006, 421, 154–160. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; He, Z. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J. Alloys Compd. 2012, 530, 71–80. [Google Scholar] [CrossRef]
- Duan, Y.L.; Xu, G.F.; Peng, X.Y.; Deng, Y.; Li, Z.; Yin, Z.M. Effect of Sc and Zr additions on grain stability and superplasticity of the simple thermal–mechanical processed Al–Zn–Mg alloy sheet. Mater. Sci. Eng. A 2015, 648, 80–91. [Google Scholar] [CrossRef]
- Forbord, B.; Hallem, H.; Røyset, J.; Marthinsen, K. Thermal stability of Al3(Scx,Zr1-x)- dispersoids in extruded aluminium alloys. Mater. Sci. Eng. A 2008, 475, 241–248. [Google Scholar] [CrossRef]
- Khanikar, P.; Liu, Y.; Zikry, M. Experimental and computational investigation of the dynamic behavior of Al–Cu–Li alloys. Mater. Sci. Eng. A 2014, 604, 67–77. [Google Scholar] [CrossRef]
- Zhang, S.F.; Zeng, W.D.; Yang, W.H.; Shi, C.L.; Wang, H.J. Ageing response of a Al-Cu-Li 2198 alloy. Mater. Des. 2014, 63, 368–374. [Google Scholar] [CrossRef]
- Jiang, B.; Yi, D.; Yi, X.; Zheng, F.; Wang, H.; Wang, B.; Liu, H.; Hu, Z. Effect of trace amounts of added Sc on microstructure and mechanical properties of 2055 aluminum alloy. Mater. Charact. 2018, 141, 248–259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Kan, Y.; Xu, W.; Lu, Y.; Zhou, D.; Li, S. Effect of Rolling Reduction on Microstructures and Mechanical Properties of Sc-Containing Al-3.2Cu-1.5Li Alloy. Metals 2023, 13, 770. https://doi.org/10.3390/met13040770
Wang J, Kan Y, Xu W, Lu Y, Zhou D, Li S. Effect of Rolling Reduction on Microstructures and Mechanical Properties of Sc-Containing Al-3.2Cu-1.5Li Alloy. Metals. 2023; 13(4):770. https://doi.org/10.3390/met13040770
Chicago/Turabian StyleWang, Jian, Yun Kan, Wenting Xu, Yalin Lu, Dongshuai Zhou, and Shenao Li. 2023. "Effect of Rolling Reduction on Microstructures and Mechanical Properties of Sc-Containing Al-3.2Cu-1.5Li Alloy" Metals 13, no. 4: 770. https://doi.org/10.3390/met13040770
APA StyleWang, J., Kan, Y., Xu, W., Lu, Y., Zhou, D., & Li, S. (2023). Effect of Rolling Reduction on Microstructures and Mechanical Properties of Sc-Containing Al-3.2Cu-1.5Li Alloy. Metals, 13(4), 770. https://doi.org/10.3390/met13040770