Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials and Processing
2.2. Characterization
3. Results
3.1. Crater Morphology
3.2. Grain Size
3.3. Microhardness
3.4. Microstructure
3.4.1. Mg3Zn Alloy Laser Treatment under Air Medium
3.4.2. Mg3Zn Alloy Laser-Ablated under Water Medium
3.4.3. Mg3Zn1HA Nanocomposite Laser Treatment under Air Medium
3.4.4. Mg3Zn1HA Nanocomposite Laser Treatment under Water Medium
3.5. Atomic Force Microscopy (AFM)
4. Discussion
5. Conclusions
- The Mg3Zn alloys and Mg3Zn1HA nanocomposites fabricated through the disintegrated melt deposition technique were successfully subjected to surface modification through laser treatment using a fiber laser in air and water media.
- The laser treatment created craters on the surface of the Mg3Zn alloys and Mg3Zn1HA nanocomposites. The laser-treated specimens processed in the water medium exhibited shallow craters, which were attributed to the diffraction of the laser by the water medium, which also facilitated the removal of debris whereas the laser-treated specimens processed in an air medium exhibited deep gorge-walled craters with geometrically circular profiles at the entry and the presence of ablation debris was observed.
- The grain size of the laser-treated Mg3Zn1HA nanocomposite exhibited refinement when compared with the Mg3Zn alloy, which was attributed to the nucleation of more new grains caused by the presence of HA nanoparticles in the composite.
- The surface topography analysis using an atomic force microscope (AFM) showed that the presence of nano-HA yielded a better surface roughness, ideal for cell adhesion and cell growth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shadanbaz, S.; Dias, G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater. 2012, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [PubMed]
- Biber, R.; Pauser, J.; Geßlein, M.; Bail, H.J. Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation. Case Rep. Orthop. 2016, 2016, 9673174. [Google Scholar] [CrossRef] [PubMed]
- Thormann, U.; Alt, V.; Heimann, L.; Gasquere, C.; Heiss, C.; Szalay, G.; Franke, J.; Schnettler, R.; Lips, K.S. The biocompatibility of degradable magnesium interference screws: An experimental study with sheep. BioMed Res. Int. 2015, 2015, 943603. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, L.; Zhao, L.; Lingling, E.; Yang, S.; Jia, S.; Wen, N. Antibacterial and Antioxidant Effects of Magnesium Alloy on Titanium Dental Implants. Comput. Math. Methods Med. 2022, 2022, 6537676. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, S.; Lu, F.; Wang, B.; Yang, L.; Qin, L.; Yang, K.; Li, Y.; Li, W.; Wang, W.; et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials 2016, 81, 84–92. [Google Scholar] [CrossRef]
- Kumar, K.; Gill, R.S.; Batra, U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater. Technol. 2017, 33, 153–172. [Google Scholar] [CrossRef]
- Zhu, C.; Lv, Y.; Qian, C.; Ding, Z.; Jiao, T.; Gu, X.; Lu, E.; Wang, L.; Zhang, F. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. Int. J. Nanomed. 2018, 13, 1881–1898. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Sun, H.; Cheng, J.; Ren, X.; Jiang, P. Improving ductility of AlSi7Mg alloy by casting-forging process: Effect of deformation degree. J. Mater. Res. Technol. 2021, 14, 2571–2578. [Google Scholar] [CrossRef]
- Zhu, W.-Y.; Guo, J.; Yang, W.-F.; Tao, Z.-Y.; Lan, X.; Wang, L.; Xu, J.; Qin, L.; Su, Y.-X. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats. J. Orthop. Transl. 2022, 33, 153–161. [Google Scholar] [CrossRef]
- Renish, R.R.; Raja, B.V.K.; Sonawwanay, P.D.; Reddy, A.S.; Davanapalli, S.R. An insight into welding of magnesium and its alloys—A review. AIP Conf. Proc. 2022, 2460, 050007. [Google Scholar] [CrossRef]
- Parande, G.; Manakari, V.; Prasadh, S.; Chauhan, D.; Rahate, S.; Wong, R.; Gupta, M. Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. J. Mech. Behav. Biomed. Mater. 2019, 103, 103584. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Prasad, S.V.S.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research-A review. J. Magnes. Alloy. 2021, 10, 1–61. [Google Scholar] [CrossRef]
- Saji, V.S. Electrophoretic (EPD) coatings for magnesium alloys. J. Ind. Eng. Chem. 2021, 103, 358–372. [Google Scholar] [CrossRef]
- Gedvilas, M.; Indrišiūnas, S.; Voisiat, B.; Stankevičius, E.; Selskis, A.; Račiukaitis, G. Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon. Phys. Chem. Chem. Phys. 2018, 20, 12166–12174. [Google Scholar] [CrossRef]
- Li, G.; Zhang, L.; Wang, L.; Yuan, G.; Dai, K.; Pei, J.; Hao, Y. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: An in vitro and in vivo study. Acta Biomater. 2018, 65, 486–500. [Google Scholar] [CrossRef]
- Patel, D.S.; Singh, A.; Balani, K.; Ramkumar, J. Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V. Surf. Coat. Technol. 2018, 349, 816–829. [Google Scholar] [CrossRef]
- Wei, D.; Wang, J.; Wang, H.; Liu, Y.; Li, S.; Li, D. Anti-corrosion behaviour of superwetting structured surfaces on Mg-9Al-1Zn magnesium alloy. Appl. Surf. Sci. 2019, 483, 1017–1026. [Google Scholar] [CrossRef]
- Rakesh, K.R.; Bontha, S.; Ramesh, M.R.; Das, M.; Balla, V.K. Laser surface melting of Mg-Zn-Dy alloy for better wettability and corrosion resistance for biodegradable implant applications. Appl. Surf. Sci. 2019, 480, 70–82. [Google Scholar] [CrossRef]
- Manne, B.; Thiruvayapati, H.; Bontha, S.; Rangarasaiah, R.M.; Das, M.; Balla, V.K. Surface design of Mg-Zn alloy temporary orthopaedic implants: Tailoring wettability and biodegradability using laser surface melting. Surf. Coat. Technol. 2018, 347, 337–349. [Google Scholar] [CrossRef]
- Melia, M.A.; Florian, D.C.; Steuer, F.W.; Briglia, B.F.; Purzycki, M.K.; Scully, J.R.; Fitz-Gerald, J.M. Investigation of critical processing parameters for laser surface processing of AZ31B-H24. Surf. Coat. Technol. 2017, 325, 157–165. [Google Scholar] [CrossRef]
- Ge, M.-Z.; Xiang, J.-Y.; Yang, L.; Wang, J. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid. Surf. Coat. Technol. 2016, 310, 157–165. [Google Scholar] [CrossRef]
- Mondal, A.; Kumar, S.; Blawert, C.; Dahotre, N.B. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy. Surf. Coat. Technol. 2008, 202, 3187–3198. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Lei, W.; Xv, R. Effect of laser surface melting on friction and wear behavior of AM50 magnesium alloy. Surf. Coat. Technol. 2008, 202, 3175–3179. [Google Scholar] [CrossRef]
- Li, Y.; Arthanari, S.; Guan, Y. Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys. Surf. Coat. Technol. 2019, 378, 124964. [Google Scholar] [CrossRef]
- Liu, S.; Hu, J.; Yang, Y.; Guo, Z.; Wang, H. Microstructure analysis of magnesium alloy melted by laser irradiation. Appl. Surf. Sci. 2005, 252, 1723–1731. [Google Scholar] [CrossRef]
- Ge, M.-Z.; Xiang, J.-Y.; Tang, Y.; Ye, X.; Fan, Z.; Lu, Y.; Zhang, X. Wear behavior of Mg-3Al-1Zn alloy subjected to laser shock peening. Surf. Coat. Technol. 2018, 337, 501–509. [Google Scholar] [CrossRef]
- Wang, H.; Kalchev, Y.; Wang, H.; Yan, K.; Gurevich, E.; Ostendorf, A. Surface modification of NiTi alloy by ultrashort pulsed laser shock peening. Surf. Coat. Technol. 2020, 394, 125899. [Google Scholar] [CrossRef]
- Cao, J.; Lian, R.; Jiang, X.; Rogachev, A.V. In vitro degradation assessment of calcium fluoride-doped hydroxyapatite coating prepared by pulsed laser deposition. Surf. Coat. Technol. 2021, 416, 127177. [Google Scholar] [CrossRef]
- Asl, S.M.; Ganjali, M.; Karimi, M. Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro. Surf. Coat. Technol. 2019, 363, 236–243. [Google Scholar] [CrossRef]
- Cotell, C.M.; Chrisey, D.B.; Grabovski, K.S.; Spague, J.A. Pulsed laser deposition of biocompatible thin films. J. Appl. Biomater. 1992, 8, 87. [Google Scholar] [CrossRef]
- Kalakuntla, N.; Bhatia, N.; Patel, S.; Joshi, S.S.; Wu, T.-C.; Ho, Y.-H.; Dahotre, N.B. Laser patterned hydroxyapatite surfaces on AZ31B magnesium alloy for consumable implant applications. Materialia 2020, 11, 100693. [Google Scholar] [CrossRef]
- Goto, T.; Kojima, T.; Iijima, T.; Yokokura, S.; Kawano, H.; Yamamoto, A.; Matsuda, K. Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone. J. Orthop. Sci. 2001, 6, 444–447. [Google Scholar] [CrossRef]
- Vladescu, A.; Braic, M.; Azem, F.A.; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A.; Birlik, I. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings. Appl. Surf. Sci. 2015, 354, 373–379. [Google Scholar] [CrossRef]
- Praveen, T.; Nayaka, H.S.; Swaroop, S. Influence of equal channel angular pressing and laser shock peening on fatigue behaviour of AM80 alloy. Surf. Coat. Technol. 2019, 369, 221–227. [Google Scholar] [CrossRef]
- Pacha-Olivenza, M.; Galván, J.; Porro, J.; Lieblich, M.; Díaz, M.; Angulo, I.; Cordovilla, F.; García-Galván, F.; Fernández-Calderón, M.; González-Martín, M.; et al. Efficacy of laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response. Surf. Coat. Technol. 2019, 384, 125320. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Men, G.; Han, N.; Cui, G. Ablated surface morphology evolution of SiCp/Al composites irradiated by a nanosecond laser. Surf. Coat. Technol. 2021, 429, 127973. [Google Scholar] [CrossRef]
- Majumdar, J.; Chandra, B.; Mordike, B.; Galun, R.; Manna, I. Laser surface engineering of a magnesium alloy with Al+Al2O3. Surf. Coat. Technol. 2004, 179, 297–305. [Google Scholar] [CrossRef]
- El Hassanin, A.; Obeidi, M.A.; Scherillo, F.; Brabazon, D. CO2 laser polishing of laser-powder bed fusion produced AlSi10Mg parts. Surf. Coat. Technol. 2021, 419, 127291. [Google Scholar] [CrossRef]
- Zhang, Y.; You, J.; Lu, J.; Cui, C.; Jiang, Y.; Ren, X. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy. Surf. Coat. Technol. 2010, 204, 3947–3953. [Google Scholar] [CrossRef]
- BupeshRaja, V.; Parande, G.; Ramachandran, D.; Reddy, A.S.; Gupta, M.; Sonawane, P.D. Studies on surface morphology of under liquid laser ablated magnesium alloy. Mater. Today Proc. 2021, 46, 1071–1076. [Google Scholar] [CrossRef]
- Kruusing, A. Underwater and water-assisted laser processing: Part 1—General features, steam cleaning and shock processing. Opt. Lasers Eng. 2004, 41, 307–327. [Google Scholar] [CrossRef]
- Kruusing, A. Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Opt. Lasers Eng. 2004, 41, 329–352. [Google Scholar] [CrossRef]
- Sano, Y.; Mukai, N.; Okazaki, K.; Obata, M. Residual stress improvement in metal surface irradiation. Nucl. Instrum. Methods Phys. Res. B 1997, 121, 432–436. [Google Scholar] [CrossRef]
- Itina, T.E. On Nanoparticle Formation by Laser Ablation in Liquids. J. Phys. Chem. C 2010, 115, 5044–5048. [Google Scholar] [CrossRef]
- Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J. Laser-assisted surface modification of Ti-implant in air and water environment. Appl. Surf. Sci. 2018, 428, 669–675. [Google Scholar] [CrossRef]
- Wang, C.X.; Liu, P.; Cui, H.; Yang, G.W. Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 2005, 87, 201913. [Google Scholar] [CrossRef]
- Pulido-González, N.; Torres, B.; Zheludkevich, M.; Rams, J. High Power Diode Laser (HPDL) surface treatments to improve the mechanical properties and the corrosion behaviour of Mg-Zn-Ca alloys for biodegradable implants. Surf. Coat. Technol. 2020, 402, 126314. [Google Scholar] [CrossRef]
- Liu, C.; Liang, J.; Zhou, J.; Wang, L.; Li, Q. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy. Appl. Surf. Sci. 2015, 343, 133–140. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, Y.; Lin, W.; Gu, X. Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing. Surf. Coat. Technol. 2019, 362, 176–184. [Google Scholar] [CrossRef]
- Pou-Álvarez, P.; Riveiro, A.; Nóvoa, X.; Fernández-Arias, M.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Lusquiños, F.; Pou, J. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length. Surf. Coat. Technol. 2021, 427, 127802. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, W.; Li, Z.; Zheng, H. Boiling effect in crater development on magnesium surface induced by laser melting. Surf. Coat. Technol. 2014, 252, 168–172. [Google Scholar] [CrossRef]
- Voisiat, B.; Gedvilas, M.; Raciukaitis, G. Picosecond Laser 4-beam interference ablation of metal films for microstructuring. In Proceedings of the 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Anaheim, CA, USA, 26–30 September 2010. [Google Scholar] [CrossRef]
- Voisiat, B.; Gedvilas, M.; Indrišiūnas, S.; Račiukaitis, G. Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring. Phys. Procedia 2011, 12, 116–124. [Google Scholar] [CrossRef]
- Indrišiūnas, S.; Voisiat, B.; Gedvilas, M.; Račiukaitis, G. Two complementary ways of thin-metal-film patterning using laser beam interference and direct ablation. J. Micromech. Microeng. 2013, 23, 095034. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Zhang, S.; Wang, C.; Wu, L.; Feng, J. Characterization of the underwater welding arc bubble through a visual sensing method. J. Mater. Process. Technol. 2017, 251, 95–108. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2012, 15, 3027–3046. [Google Scholar] [CrossRef]
- Zhigilei, L.V.; Lin, Z.; Ivanov, D.S. Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion. J. Phys. Chem. C 2009, 113, 11892–11906. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photon-Rev. 2020, 14, 2000215. [Google Scholar] [CrossRef]
- Rehman, A.U.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic computational fluid dynamics modelling for the laser-melting deposition of AISI 304 stainless steel single tracks with experimental correlation: A novel study. Metals 2021, 11, 1569. [Google Scholar] [CrossRef]
- Mallea, R.T.; Bolopion, A.; Beugnot, J.-C.; Lambert, P.; Gauthier, M. Laser-Induced thermocapillary convective flows: A new approach for noncontact actuation at microscale at the fluid/gas interface. IEEE/ASME Trans. Mechatron. 2016, 22, 693–704. [Google Scholar] [CrossRef]
- Zhou, X.; Zhong, Y.; Shen, Z.; Liu, W. The surface-tension-driven Benard conventions and unique sub-grain cellular microstructures in 316L steel selective laser melting. arXiv 2018, arXiv:1801.01408. [Google Scholar] [CrossRef]
- Swain, A.; Bhattacharya, A. Effect of Marangoni and Natural Convection during Laser Melting. Available online: https://istam.iitkgp.ac.in/resources/2019/proceedings/Paper_Full/28fullpaper.pdf (accessed on 20 April 2023).
- Ghosh, P.; Mezbahul-Islam, M.; Medraj, M. Critical assessment and thermodynamic modeling of Mg–Zn, Mg–Sn, Sn–Zn and Mg–Sn–Zn systems. Calphad 2011, 36, 28–43. [Google Scholar] [CrossRef]
- Nakhoul, A.; Maurice, C.; Agoyan, M.; Rudenko, A.; Garrelie, F.; Pigeon, F.; Colombier, J.-P. Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nanomaterials 2021, 11, 1020. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.-H.; Vora, H.D.; Dahotre, N.B. Laser surface modification of AZ31B Mg alloy for bio-wettability. J. Biomater. Appl. 2014, 29, 915–928. [Google Scholar] [CrossRef]
Material | O | Mg | Zn | Ca |
---|---|---|---|---|
Mg3Zn (in air) | 13.94 | 83.69 | 2.37 | - |
Mg3Zn (in water) | 55.25 | 43.62 | 1.13 | - |
Mg3Zn1HA (in air) | 13.09 | 84.36 | 2.28 | 0.27 |
Mg3Zn1HA (in water) | 18.43 | 79.92 | 1.27 | 0.38 |
Material | Peak-to-Peak (nm) | Ten-Point Height (nm) | Average (nm) | Average Roughness (nm) | Root Mean Square (nm) |
---|---|---|---|---|---|
Mg3Zn (medium: air) | 188.59 | 85.97 | 79.81 | 18.01 | 23.22 |
Mg3Zn (medium: water) | 134.31 | 73.70 | 94.24 | 10.64 | 14.24 |
Mg3Zn1HA (medium: air) | 1538.86 | 766.26 | 738.03 | 108.39 | 146.84 |
Mg3Zn1HA (medium: water) | 390.87 | 199.40 | 251.07 | 42.44 | 52.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bupesh Raja, V.K.; Parande, G.; Kannan, S.; Sonawwanay, P.D.; Selvarani, V.; Ramasubramanian, S.; Ramachandran, D.; Jeremiah, A.; Akash Sundaraeswar, K.; Satheeshwaran, S.; et al. Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite. Metals 2023, 13, 850. https://doi.org/10.3390/met13050850
Bupesh Raja VK, Parande G, Kannan S, Sonawwanay PD, Selvarani V, Ramasubramanian S, Ramachandran D, Jeremiah A, Akash Sundaraeswar K, Satheeshwaran S, et al. Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite. Metals. 2023; 13(5):850. https://doi.org/10.3390/met13050850
Chicago/Turabian StyleBupesh Raja, V. K., Gururaj Parande, Sathish Kannan, Puskaraj D. Sonawwanay, V. Selvarani, S. Ramasubramanian, D. Ramachandran, Abishek Jeremiah, K. Akash Sundaraeswar, S. Satheeshwaran, and et al. 2023. "Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite" Metals 13, no. 5: 850. https://doi.org/10.3390/met13050850
APA StyleBupesh Raja, V. K., Parande, G., Kannan, S., Sonawwanay, P. D., Selvarani, V., Ramasubramanian, S., Ramachandran, D., Jeremiah, A., Akash Sundaraeswar, K., Satheeshwaran, S., & Gupta, M. (2023). Influence of Laser Treatment Medium on the Surface Topography Characteristics of Laser Surface-Modified Resorbable Mg3Zn Alloy and Mg3Zn1HA Nanocomposite. Metals, 13(5), 850. https://doi.org/10.3390/met13050850