Elastoplastic Deformation of Rotating Disk Made of Aluminum Dispersion-Hardened Alloys
Abstract
:1. Introduction
2. Experimental Procedure and Results
2.1. AA5056–Al3Er Alloy
2.2. A356–TiB2 Alloy
2.3. Methods
3. Mathematical Model
- The whole disk is in the elastic state ().
- The disk is in the elastic state, but its inner surface is in the plastic state ().
- Inner disk layers are in the plastic state, while outer layers are in the elastic state ().
- The disk material is in the plastic state throughout its width ().
4. Mathematical Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, F.L.; Rawlings, R.D. Composite Materials: Engineering and Science; CRC Press: Boca Raton, FL, USA, 1999; p. 480. [Google Scholar]
- Arnhold, V.; Hummert, K. New Materials by Mechanical Alloying Techniques; DGM Informationsgeselischaft Verlag: Oberursel, Germany, 1989; p. 269. [Google Scholar]
- Weber, J.H.; Schelleng, R.D. Dispersion-Strengthened Aluminum Alloys; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland; Hong Kong, China, 1988; Part 1, Chapter 11; pp. 269–293. [Google Scholar]
- El-Labban, H.F.; Abdelaziz, M.; Mahmoud, E.R. Modification of carbon steel by laser surface melting: Part I: Effect of laser beam travelling speed on microstructural features and surface hardness. Am. J. Eng. Appl. Sci. 2013, 6, 352–359. [Google Scholar] [CrossRef]
- Kröpfl, O.; Vöhringer, E.; Macherauch, E. Creep Behavior of Dispersion-Hardened Aluminum Materials. Mech. Time-Depend. Mat. 1999, 3, 1–13. [Google Scholar] [CrossRef]
- Stobrawa, Z.M.; Rdzawski, W.; Głuchowski, W. Structure and properties of dispersion hardened submicron grained copper. J. Ach. Mat. Manuf. Eng. 2007, 20, 195–198. [Google Scholar]
- Berezovsky, V.V.; Shavnev, A.A.; Lomov, S.B.; Kurganova, Y.A. Obtaining and analysis of the structure of dispersion-strengthened composite materials of the Al-SiC system with different content of the reinforcing phase. Avia. Mat. Tech. 2014, 6, 17–23. [Google Scholar] [CrossRef]
- Boopathi, M.M.; Arulshri, K.P.; Iyandurai, N. Evaluation of Mechanical Properties of Aluminium Alloy 2024 Reinforced with Silicon Carbide and Fly Ash Hybrid Metal Matrix Composites. Am. J. Appl. Sci. 2013, 10, 219–229. [Google Scholar] [CrossRef]
- Lutz, A.R.; Galochkina, I.A. Aluminum Composite Alloys—Alloys of the Future: Educational Book; Samara State Technical University: Samara, Russia, 2013; p. 82. (In Russian) [Google Scholar]
- Kaldre, I.; Bojarevičs, A.; Grantsa, I.; Beinerts, T.; Kalvāns, M.; Milgrāvis, M.; Gerbeth, G. Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation. Acta. Mater. 2016, 118, 253–259. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Q.; Easton, M.A.; Dargusch, M.S.; Qian, M.; Eskin, D.G.; StJohn, D.H. Role of ultrasonic treatment, inoculation and solute in the grain refnement of commercial purity aluminium. Sci. Rep. 2017, 7, 9729. [Google Scholar] [CrossRef] [PubMed]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 2016, 68, 1216. [Google Scholar] [CrossRef]
- Zha, M.; Li, Y.; Mathiesen, R.H.; Bjørge, R.; Roven, H.J. Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 2015, 84, 42–54. [Google Scholar] [CrossRef]
- Sunghak, L.; Dongil, K.; Dongwoo, S. Microstructure and fracture of SiC-particulate-reinforced cast A356 aluminum alloy composites. Metall. Mater. Trans. 1996, 27, 3893–3901. [Google Scholar] [CrossRef]
- Vorozhtsov, S.; Zhukov, I.; Promakhov, V.; Naydenkin, E.; Khrustalyov, A.; Vorozhtsov, A. The Influence of ScF3 Nanoparticles on the Physical and Mechanical Properties of New Metal Matrix Composites Based on A356 Aluminum Alloy. JOM 2016, 68, 3101–3106. [Google Scholar] [CrossRef]
- Khmeleva, M.; Khrustalev, A.; Vorozhtsov, A. Structure and mechanical properties of A356-C alloys. MATEC Web Conf. 2018, 243, 24. [Google Scholar] [CrossRef]
- Vorozhtsov, A.B.; Platov, V.V.; Kozulin, A.A.; Khrustalev, A.P.; Mishin, I.P.; Zhukov, I.A. Study of the effect of TiB2 particles on the structure, deformation behavior, and properties of the aluminum alloy 1550. Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2020, 67, 102–116. [Google Scholar] [CrossRef]
- Stewart, A.T.; Martin, J.W. Dislocation-particle interactions in plastically deformed two-phase aluminium crystals. Acta Metall. 1975, 23, 1–7. [Google Scholar] [CrossRef]
- Hymphreys, F.J.; Hirsch, P.B. The deformation of single crystals of copper and copper-zinc alloys containing alumina particles—II. Microstructure and dislocation-particle interactions. Pros. Roy. Soc. Lond. 1970, A318, 73–92. [Google Scholar] [CrossRef]
- Orowan, E. Condition for dislocation passage of precipitations. Proc. Symp. Intern. Stress Met. Alloy. 1948, VIII, 451–454. [Google Scholar]
- Ashby, M.F. Work hardening of dispersion-hardened crystals. Phil. Mag. 1966, 14, 1157–1178. [Google Scholar] [CrossRef]
- Ebeling, R.; Ashby, M.F. Dispersion hardening of copper single crystals. Phil. Mag. 1966, 13, 805–834. [Google Scholar] [CrossRef]
- Hazzledine, P.M.; Hirsch, P.B. A coplanar Orowan loops model for dispersion hardening. Phil. Mag. 1974, 30, 1331–1351. [Google Scholar] [CrossRef]
- Hymphreys, F.J.; Martin, J.W. The effect of dispersed phases upon dislocation distributions in plastically deformed copper crystals. Phil. Mag. 1967, 16, 927–957. [Google Scholar] [CrossRef]
- Ashby, M.F.; Johnson, K. Materials and Design. In The Art and Science of Materials Selection in Product Design; Butterworth Heinemann: Oxford, UK, 2002; p. 336. [Google Scholar]
- Kovalevskaya, T.A.; Daneyko, O.I. Formation of maximum strength of disperse-strengthened aluminum-based crystalline alloys containing incoherent particles. Bullet. Rus. Acad. Scien. Phys. 2021, 85, 1002–1007. (In Russian) [Google Scholar] [CrossRef]
- Daneyko, O.I.; Kovalevskaya, T.A. Temperature Effect on Stress-Strain Properties of Dispersion-Hardened Crystalline Materials with Incoherent Nanoparticles. Russ. Phys. J. 2019, 61, 1687–1694. [Google Scholar] [CrossRef]
- Kovalevskaya, T.A.; Daneyko, O.I. The Influence of Scale Parameters of Strengthening Phase on Plastic Shear Zone in Heterophase Alloys with Incoherent Nanoparticles. Russ. Phys. J. 2020, 62, 2247–2254. [Google Scholar] [CrossRef]
- Daneyko, O.I.; Kovalevskaya, T.A.; Matvienko, O.V. The influence of incoherent nanoparticles on thermal stability of aluminum alloys. Russ. Phys. J. 2018, 61, 1229–1235. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Stress-Stain State of Pipe Made of Copper-Based Alloy Strengthened with Incoherent Nanoparticles. Russ. Phys. J. 2017, 60, 562–569. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Dislocation Structure of the Pipe Made of Alloy Reinforced with Incoherent Particles Under Uniform Internal Pressure. Russ. Phys. J. 2017, 60, 1233–1242. [Google Scholar] [CrossRef]
- Matvienko, O.; Daneyko, O.; Kovalevskaya, T.; Khrus talyov, A.; Zhukov, I.; Vorozhtsov, A. Investigation of stresses induced due to the mismatch of the coefficients of thermal expansion of the matrix and the strengthening particle in aluminum-based composites. Metals 2021, 11, 279. [Google Scholar] [CrossRef]
- Birger, I.A.; Koterov, N.I. Strength Calculation of Aircraft Gas Turbine Engines; M: Mashinostroenie: Moscow, Russia, 1984; p. 208. (In Russian) [Google Scholar]
- Demyanushko, I.V.; Koroleva, E.F. Optimal design of turbomachinery disks. Izv. AN USSR 1972, 2, 176–180. (In Russian) [Google Scholar]
- Demyanushko, I.V.; Birger, I.A. Calculation of the Strength of Rotating Disks; M: Mashinostroenie: Moscow, Russia, 1978; p. 247. (In Russian) [Google Scholar]
- Malinin, N.N. Calculation of a rotating unevenly heated disc of variable thickness. Inz. Sb. 1953, 17, 151–163. [Google Scholar]
- Gamer, U. Tresca’s Yield Condition and the Rotating Disk. J. Appl. Mech. 1983, 50, 676–678. [Google Scholar] [CrossRef]
- Artemov, M.A.; Yakubenko, A.P. Rotating disc mechanical behaviour mathematical modelling. Proc. Voron. State Univ. Ser. Phys. Math. 2014, 1, 30–38. [Google Scholar]
- Lomakin, E.; Alexandrov, S.; Jeng, Y.R. Stress and strain fields in rotating elastic/plastic annular discs. Arch. Appl. Mech. 2016, 86, 235–244. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J.; Abramson, H. Theory of Elasticity (3rd ed.). J. Appl. Mech. 1970, 37, 888. [Google Scholar] [CrossRef]
- Boresi, A.P.; Schmidt, R.J.; Sidebottom, O.M. Advanced Mechanics of Materials, 5th ed.; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Chakrabarty, J. Theory of Plasticity, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Gamer, U. Elastic-plastic deformation of the rotating solid disk. Ing. Arch. 1984, 54, 345–354. [Google Scholar] [CrossRef]
- Jahromi, B.H.; Nayeb-Hashemi, H.; Vaziri, A. Elasto-plastic stresses in a functionally graded rotating disk. J. Eng. Mat. Tech. 2012, 134, 021004. [Google Scholar] [CrossRef]
- Apatay, T.; Eraslan, A.N. Elastic deformation of rotating parabolic discs: Analytical solutions. J. Fac. Eng. Arch. Gazi Univ. 2003, 18, 115–135. [Google Scholar]
- Calderale, P.M.; Vivio, F.; Vullo, V. Thermal stresses of rotating hyperbolic disks as particular case of non-linearly variable thickness disks. J. Therm. Stress. 2012, 35, 877–891. [Google Scholar] [CrossRef]
- Güven, U. Tresca’s yield condition and the linear hardening rotating solid disk of variable thickness. J. Appl. Mat. Mech. 1995, 75, 805–807. [Google Scholar] [CrossRef]
- Vivio, F.; Vullo, V.; Cifani, P. Theoretical stress analysis of rotating hyperbolic disk without singularities subjected to thermal load. J. Therm. Stress. 2014, 37, 117–136. [Google Scholar] [CrossRef]
- Eraslan, A.N. Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion. Eur. J. Mech. A/Solids 2003, 22, 861–874. [Google Scholar] [CrossRef]
- Eraslan, A.N. Elastic–plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int. J. Mech. Sci. 2003, 45, 643–667. [Google Scholar] [CrossRef]
- Yıldırım, V. A Parametric Study on the Centrifugal Force-Induced Stress and Displacements in Power-Law Graded Hyperbolic Discs. Lat. Am. J. Solids Struct. 2018, 15, e34. [Google Scholar] [CrossRef]
- Thakur, P. Analysis of stresses in a thin rotating disc with inclusion and edge loading. Sci. Technol. Rev. 2013, 63, 9–16. [Google Scholar]
- Aleksandrova, N.N.; Artemov, M.A.; Baranovskii, E.S.; Shashkin, A.I. On stress/strain state in a rotating disk. J. Phys. Conf. Ser. 2019, 1203, 012001. [Google Scholar] [CrossRef]
- Aleksandrova, N. Application of Mises yield criterion to rotating solid disk problem. Int. J. Eng. Sci. 2012, 51, 333–337. [Google Scholar] [CrossRef]
- Aleksandrova, N. Exact deformation analysis of a solid rotating elastic-perfectly plastic disk. Int. J. Mech. Sci. 2014, 88, 55–60. [Google Scholar] [CrossRef]
- Afsar, A.M.; Go, J. Finite element analysis of thermoelastic field in a rotating FGM circular disk. Appl. Math. Mod. 2010, 34, 3309–3320. [Google Scholar] [CrossRef]
- Lamb, H.; Southwell, R.V. The vibrations of a spinning disk. Proc. R. Soc. Ser. A 1921, 99, 272–280. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Residual Stresses Induced by Elastoplastic Unloading in a Tube Made of Dispersion-Hardened Alloy. Russ. Phys. J. 2018, 61, 730–742. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Strengthening Particle Size Effect on Residual Stresses in Dispersion-Hardened Alloy. Russ. Phys. J. 2018, 61, 962–973. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Elastoplastic Deformation of Dispersion-Hardened Aluminum Tube Under External Pressure. Russ. Phys. J. 2018, 61, 1520–1528. [Google Scholar] [CrossRef]
- Matvienko, O.; Daneyko, O.; Kovalevskaya, T. Mathematical modeling of nanodispersed hardening of FCC materials. Acta Met. Sin. 2018, 31, 1297–1304. [Google Scholar] [CrossRef]
- Matvienko, O.; Daneyko, O.; Kovalevskaya, T. Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy. MATEC Web Conf. 2018, 243, 8. [Google Scholar] [CrossRef]
- Matvienko, O.; Daneyko, O.; Kovalevskaya, T. Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy in an inhomogeneous temperature field. Crystals 2020, 10, 1103. [Google Scholar] [CrossRef]
- Matvienko, O.; Daneyko, O.; Kovalevskaya, T. Investigation of the influence of temperature distribution on the stress-strain state of the tube walls made from a disperse-hardened alloy. Bas. Prob. Mat. Sci. 2020, 17, 330–337. [Google Scholar] [CrossRef]
- Zhukov, I.A.; Promakhov, V.V.; Matveev, A.E.; Platov, V.V.; Khrustalev, A.P.; Dubkova, Y.A.; Vorozhtsov, S.A.; Potekaev, A.I. Principles of structure and phase composition formation in composite master alloys of the Al–Ti–B/B4c systems used for aluminum alloy modification. Russ. Phys. J. 2018, 60, 2025–2031. [Google Scholar] [CrossRef]
- Vorozhtsov, S.; Minkov, L.; Dammer, V.; Khrustalyov, A.; Zhukov, I.; Promakhov, V.; Vorozhtsov, A.; Khmeleva, M. Ex-situ introduction and distribution of nonmetallic particles in aluminum melt: Modeling and experiment. JOM 2017, 69, 2653–2657. [Google Scholar] [CrossRef]
- Vencl, A.; Bobić, I.; Stanković, M.; Hvizdoš, P.; Bobić, B.; Stojanović, B.; Franek, F. Influence of secondary phases in A356 MMCs on their mechanical properties at macro-and nanoscale. J. Brazil. Soc. Mech. Sci. Eng. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Wang, Q.G.; Caceres, C.H.; Griffiths, J.R. Damage by eutectic particle cracking in aluminum casting alloys A356/357. Met. Mater. Trans. A 2003, 34, 2901–2912. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X. Mechanical properties and fracture of in-situ Al3Ti particulate reinforced A356 composites. Mat. Sci. Eng. A 2019, 754, 46–56. [Google Scholar] [CrossRef]
- Wang, M.; Chen, D.; Chen, Z.; Wu, Y.; Wang, F.; Ma, N.; Wang, H. Mechanical properties of in-situ TiB2/A356 composites. Mat. Sci. Eng. A 2014, 590, 246–254. [Google Scholar] [CrossRef]
- Königshofer, R.; Fürnsinn, S.; Steinkellner, P.; Lengauer, W.; Haas, R.; Rabitsch, K.; Scheerer, M. Solid-state properties of hot-pressed TiB2 ceramics. Int. J. Refr. Met. Hard Mat. 2005, 23, 350–357. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xue, F.Y.; Zhao, N.H.; Li, D.J. First-principles calculation of elastic properties of TiB2 and ZrB2. Adv. Mat. Res. 2011, 150, 40–43. [Google Scholar] [CrossRef]
- Voitenko, A.F.; Skripnik, Y.D.; Solov’eva, N.G. Anisotropy of elasticity characteristics for a series of structural metals in the temperature from 4.2 to 300 °K. Strength Mat. 1987, 19, 89–92. [Google Scholar] [CrossRef]
- Khrustalyov, A.P.; Kakhize, N.I.; Platov, V.V.; Zhukov, I.A.; Vorozhtsov, A.B. Influence of Tungsten Nanoparticles on Microstructure and Mechanical Properties of an Al-5% Mg Alloy Produced by Casting. Metals 2022, 12, 989. [Google Scholar] [CrossRef]
- Aguiar, L.R.C.; Carneiro, S.H.S.; Paiano, S. Modal analysis of a satellite with different materials. Rev. Interdiscip. Pesqui. Eng. 2017, 2, 186–198. [Google Scholar]
- Zhang, X.; Jiang, W. First-principles investigation on vibrational, anisotropic elastic and thermodynamic properties for L12structure of Al3Er and Al3Yb under high pressure. Philos. Mag. 2016, 96, 320–348. [Google Scholar] [CrossRef]
- Tang, Z.; Cui, J.; Yu, M.; Zhu, W.; Xu, Z.; Zeng, J.; Xu, T.; Yang, H.; Tan, Y.; Yang, B. A new insight on the diffusion growth mechanism of intermetallic compounds in Al-Er system. Mat. Des. 2022, 224, 111341. [Google Scholar] [CrossRef]
- Ishlinskiy, A.Y.; Ivlev, D.D. Mathematical Theory of Plasticity; Fizmatlit: Moscow, Russia, 2003; p. 704. [Google Scholar]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Elastoplastic Deformation of Dispersion-Hardened Aluminum Tube Under External and Internal Pressure. Russ. Phys. J. 2019, 62, 720–728. [Google Scholar] [CrossRef]
- Yu, M.H. References and Bibliography. In Unified Strength Theory and Its Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 371–460. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Stress-strain State of Dispersion-hardened Aluminum Tube Under External and Internal Pressure. Russ. Phys. J. 2020, 62, 1805–1812. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; Mcgraw Hill: New York, NY, USA, 2010. [Google Scholar]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. A Study of residual stress formation after elastoplastic deformation of pipe walls, made from disperse-hardened aluminum alloy, as a result of external pressure. Tomsk St. Univ. J. Math. Mech. 2021, 72, 102–117. [Google Scholar] [CrossRef]
- Gorhkov, A.G.; Starovoitov, E.I.; Tarlakovsky, D.V. Theory of Elasticity and Plasticity; Fizmatlit: Moscow, Russia, 2002; p. 416. (In Russian) [Google Scholar]
- Matvienko, O.V.; Daneyko, O.I.; Kovalevskaya, T.A. Stress-Strain State of Disperse-Hardened Aluminum Joint Tube Under Internal Pressure. Russ. Phys. J. 2020, 63, 779–790. [Google Scholar] [CrossRef]
Materials | σ0.2, MPa | σB, MPa | ɛmax,% | G, GPa | ρ, g/cm3 | ν |
---|---|---|---|---|---|---|
A356 | 102 | 204 | 2.3 | 27.2 [68] | 2.66 [69] | 0.33 [70] |
A356–0.5TiB2 | 145 | 263 | 2.8 | - | - | - |
TiB2 | - | - | - | 250 [71] | 4.52 [72] | 0.11 [73] |
AA5056 | 63 | 170 | 14.75 | 27 [74] | 2.65 [75] | 0.34 [76] |
AA5056–Al3Er | 64 | 204 | 21.37 | - | - | - |
Al3Er | - | - | 118 [77] | 5.55 [78] | 0.188 [79] |
Alloys | Γeff [MPa] | n |
---|---|---|
A356 | 1762 | 0.52 |
A356–0.5TiB2 | 2580 | 0.66 |
AA5056 | 343 | 0.34 |
AA5056–Al3Er | 314 | 0.30 |
Alloys | ξB |
---|---|
A356 | 0.508 |
A356–0.5TiB2 | 0.631 |
AA5056 | 0.229 |
AA5056–Al3Er | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matvienko, O.; Daneyko, O.; Valikhov, V.; Platov, V.; Zhukov, I.; Vorozhtsov, A. Elastoplastic Deformation of Rotating Disk Made of Aluminum Dispersion-Hardened Alloys. Metals 2023, 13, 1028. https://doi.org/10.3390/met13061028
Matvienko O, Daneyko O, Valikhov V, Platov V, Zhukov I, Vorozhtsov A. Elastoplastic Deformation of Rotating Disk Made of Aluminum Dispersion-Hardened Alloys. Metals. 2023; 13(6):1028. https://doi.org/10.3390/met13061028
Chicago/Turabian StyleMatvienko, Oleg, Olga Daneyko, Vladimir Valikhov, Vladimir Platov, Ilya Zhukov, and Aleksandr Vorozhtsov. 2023. "Elastoplastic Deformation of Rotating Disk Made of Aluminum Dispersion-Hardened Alloys" Metals 13, no. 6: 1028. https://doi.org/10.3390/met13061028
APA StyleMatvienko, O., Daneyko, O., Valikhov, V., Platov, V., Zhukov, I., & Vorozhtsov, A. (2023). Elastoplastic Deformation of Rotating Disk Made of Aluminum Dispersion-Hardened Alloys. Metals, 13(6), 1028. https://doi.org/10.3390/met13061028