The Evolution of Abnormal Grains during the Heating Stage of a Post-Weld Solution Treatment in a Friction-Stir-Welded 2519 Aluminium Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Temperature–Time Curves of the Heating Experiment
3.2. Observations Using Optical Microscopy
3.2.1. Low-Heat-Input Weld
3.2.2. High-Heat-Input Weld
3.3. Observations Using SEM
3.3.1. Low-Heat-Input Weld
3.3.2. High-Heat-Input Weld
3.4. Observations Using TEM
4. Discussion
4.1. Impact of Heat Input on Precipitation and Grain Growth
4.2. Relevance to Humphreys’ Cellular Model
4.3. Outlook
4.3.1. Final Size of Abnormal Grains
4.3.2. Microstructural Behaviour at the Periphery of the Stir Zone
4.3.3. Theory of Orientation Growth
5. Conclusions
- (1)
- The welded materials experienced drastic microstructural changes after the relatively short duration of the heating stage (≈1–2 min). These included abnormal grain growth and a complex sequence of precipitation and dissolution phenomena. All microstructural processes were strongly influenced by the thermal condition of the preceding FSW.
- (2)
- In the low-heat-input condition, the temperature attained during the FSW was insufficient for the dissolution of the second-phase precipitates. Therefore, the subsequent heating resulted in the coarsening of the retained particles and their subsequent dissolution. Both of these processes reduced the Zener force and thus deteriorated the microstructure’s thermal stability. Accordingly, the microstructural coarsening in these welds progressed very rapidly.
- (3)
- In the high-heat-input condition, the precipitates mainly dissolved during the FSW, thus producing a supersaturated solid solution. Consequently, the post-weld heating resulted in the re-precipitation of fine precipitates in the grain interior. Moreover, due to the microstructure (fine-grained) of the stir zone, the particles re-precipitated at grain boundaries. All these effects resulted in effective grain pinning and thus provided higher thermal stability. With an increase in the heating temperature, however, the particles coarsened and then dissolved, thereby triggering abnormal grain growth.
- (4)
- Considering the heterogeneous precipitation of secondary precipitates at grain boundaries, Humphreys’ cellular theory had limited applicability for the analysis of the welds produced in high-heat-input conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Templesmith, P.; Dawes, C.J. Friction stir welding. G.B. Patent Application N0. 9125978, 8 December 1991. [Google Scholar]
- Aldanondo, E.; Vivas, J.; Álvarez, P.; Hurtado, I.; Karanika, A. Friction Stir Welding of AA2099-T83 and AA2060-T8E30 Aluminium Alloys with New Cr-Free Surface Treatments and Sealant Application. Metals 2021, 11, 644. [Google Scholar] [CrossRef]
- Aldanondo, E.; Zubiri, O.; Vivas, J.; Álvarez, P.; Hurtado, I. Fretting Fatigue as a Limiting Factor on the Durability of Friction Stir Welded Lap Joints Using AA2099-T83 and AA2060-T8E30 Aluminium Alloys. J. Manuf. Mater. Process. 2022, 6, 94. [Google Scholar] [CrossRef]
- Aldanondo, E.; Vivas, J.; Álvarez, P.; Hurtado, I. Effect of Tool Geometry and Welding Parameters on Friction Stir Welded Lap Joint Formation with AA2099-T83 and AA2060-T8E30 Aluminium Alloys. Metals 2020, 10, 872. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Threadgill, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J. Friction stir welding of aluminum alloys. Int. Mater. Rev. 2009, 54, 49–93. [Google Scholar] [CrossRef]
- Liu, F.C.; Xiao, B.L.; Wang, K.; Ma, Z.Y. Investigation of superplasticity in friction stir processed 2219Al alloy. Mater. Sci. Eng. 2010, 527, 4191–4196. [Google Scholar] [CrossRef]
- Attallah, M.M.; Salem, H.G. Friction stir welding parameters: A tool for controlling abnormal grain growth during subsequent heat treatment. Mater. Sci. Eng. 2005, 391, 51–59. [Google Scholar] [CrossRef]
- Safarkhanian, M.A.; Goodarzi, M.; Boutorabi, S.M.A. Effect of abnormal grain growth on tensile strength of Al-Cu-Mg alloy friction stir welded joints. J. Mater. Sci. 2009, 44, 5452–5458. [Google Scholar] [CrossRef]
- Liu, H.J.; Feng, X.L. Effect of post-processing heat treatment on microstructure and microhardness of water-submerged friction stir processed 2219-T6 aluminum alloy. Mater. Design 2013, 47, 101–105. [Google Scholar] [CrossRef]
- Cerri, E.; Leo, P. Mechanical properties evolution during post-weld-heat treatments of double-lap friction stir welded joints. Mater. Design 2011, 32, 3465–3475. [Google Scholar] [CrossRef]
- Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint. Mater. Character. 2015, 99, 180–187. [Google Scholar] [CrossRef]
- Huang, Y.X.; Wan, L.; Lv, Z.L.; Lv, S.X.; Zhou, L.; Feng, J.C. Microstructure and microhardness of aluminium alloy friction stir welds with heat treatment. Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Sci. Technol. Weld. Join 2016, 21, 638–644. [Google Scholar] [CrossRef]
- Yuan, S.J.; Hu, Z.L.; Wang, X.S. Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Mater. Sci. Eng. 2012, 558, 586–591. [Google Scholar] [CrossRef]
- Pang, Q.; Zhang, J.H.; Huq, M.J.; Hu, Z.L. Characterization of microstructure, mechanical properties and formability for thermomechanical treatment of friction stir welded 2024-O alloys. Mater. Sci. Eng. 2019, 765, 138303. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gaur, V.; Singh, I.V. Effect of Post-Weld Heat Treatment on Mechanical Properties and Fatigue Crack Growth Rate in Welded AA-2024. Mater. Sci. Eng. 2020, 779, 139116. [Google Scholar] [CrossRef]
- Ipekoglu, G.; Erim, S.; Cam, G. Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061Al-alloy plates with different temper conditions. Metal. Mater. Trans. 2014, 45, 864–877. [Google Scholar] [CrossRef]
- Cerri, E.; Leo, P. Influence of high temperature thermal treatment on grain stability and mechanical properties of medium strength aluminium alloy friction stir welds. J. Mater. Proc. Technol. 2013, 213, 75–83. [Google Scholar] [CrossRef]
- Kalinenko, A.; Vysotskii, I.; Malopheyev, S.; Mironov, S.; Kaibyshev, R. Relationship between welding conditions, abnormal grain growth and mechanical performance in friction-stir welded 6061-T6 aluminum alloy. Mater. Sci. Eng. 2021, 817, 141409. [Google Scholar] [CrossRef]
- Zou, X.; Liu, C.; Deng, M.; Chen, J.; Zhang, L.; Chen, K. Inhibition of Abnormal Grain Growth in Stir Zone via In-Situ Intermetallic Particle Formation During Friction Stir Welding of AA6061. Acta Metall. Sin. 2023, 36, 597–610. [Google Scholar] [CrossRef]
- Singh, R.K.; Guraja, S.S.S.; Ajide, O.O.; Owolabi, G.M.; Kumar, N. Investigation of Initial Metallurgical Factors on the Dynamic Impact Response and Adiabatic Shear Bands Formation of the 6061 Al Alloy. Mater. Sci. Eng. 2023, 865, 144636. [Google Scholar] [CrossRef]
- Baghdadi, A.H.; Sajuri, Z.; Omar, M.Z.; Rajabi, A. Friction Stir Welding Parameters: Impact of Abnormal Grain Growth during Post-Weld Heat Treatment on Mechanical Properties of Al–Mg–Si Welded Joints. Metals 2020, 10, 1607. [Google Scholar] [CrossRef]
- Vysotskiy, I.V.; Malopheyev, S.S.; Mironov, S.Y.; Kaibyshev, R.O. Optimization of Friction-Stir Welding of 6061-T6 Aluminum Alloy. Phys. Mesomech. 2020, 23, 402–429. [Google Scholar] [CrossRef]
- Hassan, K.A.A.; Norman, A.F.; Price, D.A.; Prangnell, P.B. Stability of nugget zone grain structure in high strength Al-alloy friction stir welds during solution treatment. Acta Mater. 2003, 57, 1923–1936. [Google Scholar] [CrossRef]
- Charit, I.; Mishra, R.S. Abnormal grain growth in friction stir processed alloys. Scr. Mater. 2008, 58, 367–371. [Google Scholar] [CrossRef]
- Ipekoglu, G.; Erim, S.; Cam, G. Effects of temper condition and post weld treatment on the microstructure and mechanical properties of friction stir butt-welded AA7075 Al alloy. Int. Adv. Manuf. Technol. 2014, 70, 201–213. [Google Scholar] [CrossRef]
- Sharma, C.; Dwivedi, D.K.; Kumar, P. Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039. Mater. Des. 2013, 43, 134–143. [Google Scholar] [CrossRef]
- Goloborodko, A.; Ito, T.; Yun, X.; Motohashi, Y.; Itoh, G. Friction stir welding of a commercial 7075-T6 aluminum alloy: Grain refinement, thermal stability and tensile properties. Mater. Trans. 2004, 45, 2503–2508. [Google Scholar] [CrossRef]
- Ren, S.; Ma, Z.; Chen, L.; Zhang, Y. Effects of post-weld heat-treatment and second-welding on tensile properties of friction stir welded 7075-T651 aluminum alloy. Acta Metal. Sin. 2007, 43, 225–230. [Google Scholar]
- Han, P.; Yang, C.; Wang, J.; Du, B.; Liu, X.; Xue, P.; Ma, Z.; Ni, D. Effects of solution heat treatment on friction stir welding joints of 7B04-O aluminum alloy. J. Mech. Eng. 2015, 51, 35–41. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Moeini, G.; Scharifi, E.; Lauhoff, C.; Bohm, S.; Niendorf, T. On the effect of quenching on postweld heat treatment of friction-stir-welded aluminum 7075 Alloy. J. Mater. Eng. Perform. 2019, 28, 5255–5265. [Google Scholar] [CrossRef]
- Lezaack, M.B.; Simar, A. Avoiding abnormal grain growth in thick 7XXX aluminium alloy friction stir welds during T6 post heat treatments. Mater. Sci. Eng. 2021, 807, 140901. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Badini, C.; Pavese, M. Dissimilar friction stir welding of AA2198 and AA7475: Effect of solution treatment and aging on the microstructure and mechanical strength. J. Manuf. Proc. 2020, 57, 712–724. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, D.; Zhang, W.; Cao, G.; Qiu, C. Effect of Post-Weld Heat Treatments on the Microstructure and Mechanical Properties of Underwater Friction Stir Welded Joints of 7003-T4/6060-T4 Aluminium Alloys. Mater. Sci. Eng. 2023, 862, 144423. [Google Scholar] [CrossRef]
- Baghdadi, A.H.; Sajuri, Z.; Keshtgar, A.; Mohd Sharif, N.; Rajabi, A. Mechanical Property Improvement in Dissimilar Friction Stir Welded Al5083/Al6061 Joints: Effects of Post-Weld Heat Treatment and Abnormal Grain Growth. Materials 2022, 15, 288. [Google Scholar] [CrossRef] [PubMed]
- Jandaghi, M.R.; Pouraliakbar, H.; Saboori, A.; Hong, S.I.; Pavese, M. Comparative Insight into the Interfacial Phase Evolutions during Solution Treatment of Dissimilar Friction Stir Welded AA2198-AA7475 and AA2198-AA6013 Aluminum Sheets. Materials 2021, 14, 1290. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, G.; Zhang, D.; Sun, Z.; Liu, Q. Microstructure and Mechanical Properties in Dissimilar Friction Stir Welded AA2024/7075 Joints at High Heat Input: Effect of Post-Weld Heat Treatment. J. Mater. Res. Technol. 2020, 9, 14771–14782. [Google Scholar] [CrossRef]
- Humphreys, F.J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater. 1997, 45, 4231–4240. [Google Scholar] [CrossRef]
- Humphreys, F.J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles. Acta Mater. 1997, 45, 5031–5039. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, H.; Li, J.; Cai, Z.; Zhao, J.; Yang, W. Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy. Mater. Sci. Eng. 2016, 650, 281–289. [Google Scholar] [CrossRef]
- Mironov, S.; Masaki, K.; Sato, Y.S.; Kokawa, H. Relationship between material flow and abnormal grain growth in friction-stir welds. Scr. Mater. 2012, 67, 983–986. [Google Scholar] [CrossRef]
- Chen, K.; Gan, W.; Okamoto, K.; Kwansoo, C.; Wagoner, R.H. The mechanism of grain coarsening in friction-stir-welded AA5083 after heat treatment. Metal. Mater. Trans. 2011, 42, 488–507. [Google Scholar] [CrossRef]
- Kumar, N.; Mishra, R.S. Thermal stability of friction stir processed ultrafine grained AlMgSc alloy. Mater. Character. 2012, 74, 1–10. [Google Scholar] [CrossRef]
- Guo, J.; Lee, B.Y.; Du, Z.; Bi, B.G.; Tan, M.J.; Wei, J. Effect of nano-particle addition on grain structure evolution of friction stir-processed Al 6061 during postweld annealing. JOM 2016, 68, 2268–2273. [Google Scholar] [CrossRef]
- Jana, S.; Mishra, R.S.; Baumann, J.A.; Grant, G. Effect of process parameters on abnormal grain growth during friction stir processing of a cast Al alloy. Mater. Sci. Eng. 2010, 528, 189–199. [Google Scholar] [CrossRef]
- Zuiko, I.S.; Mironov, S.; Betsofen, S.; Kaibyshev, R. Suppression of abnormal grain growth in friction-stir welded Al–Cu–Mg alloy by lowering of welding temperature. Scr. Mater. 2021, 196, 113765. [Google Scholar] [CrossRef]
- Kalinenko, A.; Vysotskiy, I.; Malopheyev, S.; Mironov, S.; Kaibyshev, R. New insight into the phenomenon of the abnormal grain growth in friction-stir welded aluminum. Mater. Letter. 2021, 302, 130407. [Google Scholar] [CrossRef]
- Baillie, P.; Campbell, S.W.; Galloway, A.M.; Cater, S.R.; McPherson, N.A. A comparison of double sided friction stir welding in air and underwater for 6mm S275 steel plate. Int. J. Chem. Nucl. Metall. Mater. Eng. 2014, 8, 651–655. [Google Scholar]
- Zuiko, I.S.; Malopheyev, S.; Mironov, S.; Betsofen, S.; Kaibyshev, R. On the heterogeneous distribution of secondary precipitates in friction-stir-welded 2519 aluminum alloy. Metals 2022, 12, 671. [Google Scholar] [CrossRef]
- Zuiko, I.S.; Kaibyshev, R. Ageing response of cold-rolled Al–Cu–Mg alloy. Mater. Sci. Eng. 2020, 781, 139148. [Google Scholar] [CrossRef]
- Zuiko, I.; Kaibyshev, R. Effect of plastic deformation on the ageing behaviour of an Al–Cu–Mg alloy with a high Cu/Mg ratio. Mater. Sci. Eng. 2018, 737, 401–412. [Google Scholar] [CrossRef]
- Zuiko, I.; Kaibyshev, R. Aging behavior of an Al–Cu–Mg alloy. J. Alloys Compd. 2018, 759, 108–119. [Google Scholar] [CrossRef]
- The MathWorks Inc. Image Processing ToolboxTM: (R2021b); The MathWorks Inc.: Natick, MA, USA, 2021; Available online: https://www.mathworks.com (accessed on 24 May 2023).
- Yoshioka, H.; Fukumoto, S.; Yamamoto, A.; Tsubakino, H.; Okita, K.; Tomita, T. Effect of post weld heat treatment on mechanical properties and microstructures of friction stir welded AZ31B magnesium alloy. J. Jap. Inst. Light Metal. 2008, 58, 2–7. [Google Scholar] [CrossRef]
- Dawson, H.; Serrano, M.; Cater, S.; Jimenez-Melero, E. Characterization of ODS steel friction stir welds and their abnormal grain growth behavior. Fusion Eng. Design 2018, 135, 174–182. [Google Scholar] [CrossRef]
- Moradi, M.M.; Aval, H.J.; Jamaati, R. Effect of pre and post welding heat treatment in SiC-fortified dissimilar AA6061-AA2024 FSW butt joint. J. Manuf. Proc. 2017, 30, 97–105. [Google Scholar] [CrossRef]
- Shibayanagi, T.; Maeda, M.; Naka, M. Microstructure and its high temperature stability in a friction stir processed 5083 aluminum alloy. J. Jpn. Inst. Light Met. 2006, 56, 347–353. [Google Scholar] [CrossRef]
- Sato, Y.S.; Watanabe, H.; Kokawa, H. Grain growth phenomena in friction stir welded 1100 Al during post-weld heat treatment. Sci. Technol. Weld. Join. 2007, 12, 318–323. [Google Scholar] [CrossRef]
- Kalinenko, A.; Kim, K.; Vysotskiy, I.; Zuiko, I.; Malopheyev, S.; Mironov, S.; Kaibyshev, R. Microstructure-strength relationship in friction-stir welded 6061-T6 aluminum alloy. Mater. Sci. Eng. 2020, 793, 139858. [Google Scholar] [CrossRef]
- Baker, T.N.; Rahimi, S.; Wei, B.; He, K.; McPherson, N.A. Evolution of microstructure during double-sided friction stir welding of microalloyed steel. Metall. Mater. Trans. 2019, 50, 2748–2764. [Google Scholar] [CrossRef]
- Kalinenko, A.; Mishin, M.; Shishov, I.; Malopheyev, S.; Zuiko, I.; Novikov, V.; Mironov, S.; Kaibyshev, R.; Semiatin, S.L. Mechanisms of abnormal grain growth in friction-stir welded aluminum alloy 6061-T6. Mater. Char. 2022, 194, 112473. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherley, M. Recrystallization and Related Phenomena, 2nd ed.; Elsevier: Oxford, UK, 2004. [Google Scholar]
Weld Designation | Spindle Rate (rpm) | Feed Rate (mm/min) |
---|---|---|
Low-heat-input (LHI) weld | 500 | 760 |
High-heat-input (HHI) weld | 1100 | 380 |
Material Condition | Low-Heat-Input Weld | High-Heat-Input Weld | ||
---|---|---|---|---|
Mean Diameter (μm) | Volume Fraction (%) | Mean Diameter (μm) | Volume Fraction (%) | |
As-FSWed | 0.11 ± 0.05 | 6.7 | 0.06 ± 0.05 | 3.0 |
Heated to 450 °C | 0.12 ± 0.06 | 5.3 | 0.09 ± 0.05 | 6.0 |
Heated to 485 °C | 0.14 ± 0.07 | 3.4 | 0.16 ± 0.09 | 7.8 |
Heated to 500 °C | 0.18 ± 0.07 | 2.6 | 0.24 ± 0.07 | 4.6 |
Parameter Z | Predicted Annealing Behaviour |
---|---|
0 < Z < 0.1 | Normal grain growth |
0.1 < Z < 0.25 | Normal grain growth and abnormal grain growth |
0.25 < Z < 1.0 | Abnormal grain growth |
Z > 1.0 | No grain growth. Microstructure stability |
Heating Temperature | Secondary Precipitates | Average Grain Radius (μm) | Z | Annealing Behaviour | ||
---|---|---|---|---|---|---|
Volume Fraction (%) | Mean Size (μm) | Predicted | Observed | |||
Low-heat-input weld | ||||||
20 °C | 0.067 | 0.11 | 0.90 | 1.65 | No grain growth | No grain growth |
450 °C | 0.053 | 0.12 | 1.20 | |||
485 °C | 0.034 | 0.14 | 0.65 | Abnormal grain growth | Abnormal grain growth | |
High-heat-input weld | ||||||
485 °C | 0.078 | 0.16 | 1.75 | 2.55 | No grain growth | No grain growth |
500 °C | 0.046 | 0.24 | 3.85 | 2.20 | No grain growth | Normal grain growth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuiko, I.S.; Malopheyev, S.; Rahimi, S.; Mironov, S.; Kaibyshev, R. The Evolution of Abnormal Grains during the Heating Stage of a Post-Weld Solution Treatment in a Friction-Stir-Welded 2519 Aluminium Alloy. Metals 2023, 13, 1033. https://doi.org/10.3390/met13061033
Zuiko IS, Malopheyev S, Rahimi S, Mironov S, Kaibyshev R. The Evolution of Abnormal Grains during the Heating Stage of a Post-Weld Solution Treatment in a Friction-Stir-Welded 2519 Aluminium Alloy. Metals. 2023; 13(6):1033. https://doi.org/10.3390/met13061033
Chicago/Turabian StyleZuiko, Ivan S., Sergey Malopheyev, Salaheddin Rahimi, Sergey Mironov, and Rustam Kaibyshev. 2023. "The Evolution of Abnormal Grains during the Heating Stage of a Post-Weld Solution Treatment in a Friction-Stir-Welded 2519 Aluminium Alloy" Metals 13, no. 6: 1033. https://doi.org/10.3390/met13061033
APA StyleZuiko, I. S., Malopheyev, S., Rahimi, S., Mironov, S., & Kaibyshev, R. (2023). The Evolution of Abnormal Grains during the Heating Stage of a Post-Weld Solution Treatment in a Friction-Stir-Welded 2519 Aluminium Alloy. Metals, 13(6), 1033. https://doi.org/10.3390/met13061033