Low-Strain KVPO4F@C as Hyperstable Anode for Potassium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cao, K.; Zhao, X.; Chen, J.; Xu, B.B.; Shahzad, M.W.; Sun, W.; Pan, H.; Yan, M.; Jiang, Y. Hybrid Design of Bulk-Na Metal Anode to Minimize Cycle-Induced Interface Deterioration of Solid Na Metal Battery. Adv. Energy Mater. 2021, 12, 2102579. [Google Scholar] [CrossRef]
- Liao, J.; Chen, C.; Hu, Q.; Du, Y.; He, Y.; Xu, Y.; Zhang, Z.; Zhou, X. A Low-Strain Phosphate Cathode for High-Rate and Ultralong Cycle-Life Potassium-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2021, 60, 25575–25582. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Han, Y.; Zhang, Z.; Xu, J.; Li, J.; Zhou, X. Recent Progress and Prospects of Layered Cathode Materials for Potassium-ion Batteries. Energy Environ. Mater. 2021, 4, 178–200. [Google Scholar] [CrossRef]
- Shi, Q.; Qi, R.; Feng, X.; Wang, J.; Li, Y.; Yao, Z.; Wang, X.; Li, Q.; Lu, X.; Zhang, J.; et al. Niobium-Doped Layered Cathode Material for High-Power and Low-Temperature Sodium-Ion Batteries. Nat. Commun. 2022, 13, 3205. [Google Scholar] [CrossRef] [PubMed]
- Tsuchimoto, A.; Shi, X.M.; Kawai, K.; Mortemard de Boisse, B.; Kikkawa, J.; Asakura, D.; Okubo, M.; Yamada, A. Nonpolarizing Oxygen-Redox Capacity without O-O Dimerization in Na2Mn3O7. Nat. Commun. 2021, 12, 631. [Google Scholar] [CrossRef]
- Liu, S.; Shao, W.; Zhang, W.; Zhang, T.; Song, C.; Yao, M.; Huang, H.; Jian, X.; Hu, F. Regulating Microstructures of Soft Carbon Anodes by Terminations of Ti3C2T MXene toward Fast and Stable Sodium Storage. Nano Energy 2021, 87, 106097. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, W.; Shih, K.; Wang, J.; Wang, Z.; Guo, H.; Yan, G.; Li, X.; Song, L. A MoS2 Coating Strategy to Improve the Comprehensive Electrochemical Performance of LiVPO4F. J. Power Sources 2016, 315, 294–301. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, Z.; Song, L.; Gao, J. NaFe2PO4(MoO4)2: A Promising NASICON-Type Electrode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 48865–48871. [Google Scholar] [CrossRef]
- Kim, H.; Seo, D.-H.; Urban, A.; Lee, J.; Kwon, D.-H.; Bo, S.-H.; Shi, T.; Papp, J.K.; McCloskey, B.D.; Ceder, G. Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries. Chem. Mater. 2018, 30, 6532–6539. [Google Scholar] [CrossRef]
- Nathan, M.G.T.; Yu, H.; Kim, G.T.; Kim, J.H.; Cho, J.S.; Kim, J.; Kim, J.K. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries. Adv. Sci. 2022, 9, e2105882. [Google Scholar] [CrossRef]
- Yao, L.; Zou, P.; Wang, C.; Jiang, J.; Ma, L.; Tan, S.; Beyer, K.A.; Xu, F.; Hu, E.; Xin, H.L. High-Entropy and Superstructure-Stabilized Layered Oxide Cathodes for Sodium-Ion Batteries. Adv. Energy Mater. 2022, 12, 2201989. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Guo, J.Z.; Cao, J.M.; Wang, X.T.; Zhao, X.X.; Zheng, X.Y.; Li, W.H.; Sun, Z.H.; Liang, H.J.; Wu, X.L. An Advanced High-Entropy Fluorophosphate Cathode for Sodium-Ion Batteries with Increased Working Voltage and Energy Density. Adv. Mater. 2022, 34, e2110108. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, J.; Long, X.; Zhao, D.; Su, K.; Xv, D.; Yang, C.; Qian, D. Sol–gel synthesis of K1.33Mn8O16 nanorods and their applications for aqueous K-ion hybrid supercapacitors. Mater. Res. Bull. 2019, 109, 29–33. [Google Scholar] [CrossRef]
- Yu, H.; Walsh, M.; Liang, X. Improving the Comprehensive Performance of Na0.7MnO2 for Sodium Ion Batteries by ZrO2 Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2021, 13, 54884–54893. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.L.; Van der Ven, A. Ordering and Structural Transformations in Layered KxCrO2 for K-Ion Batteries. Chem. Mater. 2020, 32, 6392–6400. [Google Scholar] [CrossRef]
- Lei, K.; Zhu, Z.; Yin, Z.; Yan, P.; Li, F.; Chen, J. Dual Interphase Layers in Situ Formed on a Manganese-Based Oxide Cathode Enable Stable Potassium Storage. Chem 2019, 5, 3220–3231. [Google Scholar] [CrossRef]
- Naveen, N.; Han, S.C.; Singh, S.P.; Ahn, D.; Sohn, K.-S.; Pyo, M. Highly Stable P’3-K0.8CrO2 Cathode with Limited Dimensional Changes for Potassium Ion Batteries. J. Power Sources 2019, 430, 137–144. [Google Scholar] [CrossRef]
- Sada, K.; Barpanda, P. P3-Type Layered K0.48Mn0.4Co0.6O2: A Novel Cathode Material for Potassium-Ion Batteries. Chem. Commun. 2020, 56, 2272–2275. [Google Scholar] [CrossRef]
- Lai, Q.S.; Mu, J.J.; Liu, Z.M.; Zhao, L.K.; Gao, X.W.; Yang, D.R.; Chen, H.; Luo, W.B. Tunnel-Type Na2Ti6O13@Carbon Nanowires as Anode Materials for Low-Temperature Sodium-Ion Batteries. Batter. Supercaps 2023, 6, e202200549. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, W.; Xu, Z.; Shih, K.; Wang, J.; Wang, Z.; Lv, X.; Chen, J.; Li, X. Molybdenum Disulfide-Coated Lithium Vanadium Fluorophosphate Anode: Experiments and First-Principles Calculations. ChemSusChem 2016, 9, 2122–2128. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Ding, H.; Chen, S.; Yu, X.; Lu, B. Carbon Nanoscrolls for Aluminum Battery. ACS Nano 2018, 12, 8456–8466. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, J.; Jia, X.; Li, W.; Zhang, Q.; Fan, L.; Ding, H.; Yang, H.; Yu, X.; Li, X.; et al. Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano 2019, 13, 10631–10642. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Liu, Z.; Fan, L.; Lu, B. Organic Phosphomolybdate: A High Capacity Cathode for Potassium Ion Batteries. Chem. Commun. 2020, 56, 12753–12756. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Z.; Zhou, J.; Han, K.; Lu, B. Insights into Metal/Metalloid-Based Alloying Anodes for Potassium Ion Batteries. ACS Mater. Lett. 2021, 3, 1572–1598. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Liu, Z.; Li, H.; Liu, Y.; Wang, Z.; Li, X.; Shih, K.; Mai, L. Li3V(MoO4)3 as a Novel Electrode Material with Good Lithium Storage Properties and Improved Initial Coulombic Efficiency. Nano Energy 2018, 44, 272–278. [Google Scholar] [CrossRef]
- Yu, W.; Ge, J.; Hu, Y.; Shen, D.; Luo, W.; Chen, S.; Wu, L.; Liu, Z.; Zhou, J.; Yang, H.; et al. Hybrid High-Performance Aqueous Batteries with Potassium-Based Cathode||Zinc Metal Anode. Sci. China Mater. 2022, 66, 923–931. [Google Scholar] [CrossRef]
- Mu, J.-J.; Liu, Z.-M.; Lai, Q.-S.; Wang, D.; Gao, X.-W.; Yang, D.-R.; Chen, H.; Luo, W.-B. An Industrial Pathway to Emerging Presodiation Strategies for Increasing the Reversible Ions in Sodium-Ion Batteries and Capacitors. Energy Mater. 2022, 2, 200043. [Google Scholar] [CrossRef]
- Xie, C.; Liu, X.; Han, J.; Lv, L.; Zhou, X.; Han, C.; You, Y. Pomegranate-Like KVPO4F@C Microspheres as High-Volumetric-Energy-Density Cathode for Potassium-Ion Batteries. Small 2022, 18, e2204348. [Google Scholar] [CrossRef]
- Xu, J.; Duan, L.; Liao, J.; Tang, H.; Lin, J.; Zhou, X. KVPO4F/Carbon Nanocomposite with Highly Accessible Active Sites and Robust Chemical Bonds for Advanced Potassium-Ion Batteries. Green Energy Environ. 2022; in press. [Google Scholar] [CrossRef]
- Xu, J.; Liao, J.; Xu, Y.; Li, J.; Zhu, C.; Lin, J.; Zhou, X. Facile Synthesis of KVPO4F/Reduced Graphene Oxide Hybrid as a High-Performance Cathode Material for Potassium-Ion Batteries. J. Energy Chem. 2022, 68, 284–292. [Google Scholar] [CrossRef]
- Zhao, J.; Qin, Y.; Li, L.; Wu, H.; Jia, X.; Zhu, X.; Zhao, H.; Su, Y.; Ding, S. Pillar Strategy Enhanced Ion Transport and Structural Stability toward Ultra-Stable KVPO4F Cathode for Practical Potassium-Ion Batteries. Sci. Bull. 2023, 68, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhang, X.; Zhang, Q.; Hu, Q.; Li, Y.; Du, Y.; Xu, J.; Gu, L.; Zhou, X. Synthesis of KVPO4F/Carbon Porous Single Crystalline Nanoplates for High-Rate Potassium-Ion Batteries. Nano Lett. 2022, 22, 4933–4940. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Lu, B. Plum Pudding Model Inspired KVPO4F@3DC as High-Voltage and Hyperstable Cathode for Potassium Ion Batteries. Sci. Bull. 2020, 65, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Du, X.; Huang, J.Q.; Zhang, B. KVPO4F as a Novel Insertion-Type Anode for Potassium Ion Batteries. Chem. Commun. 2019, 55, 11311–11314. [Google Scholar] [CrossRef] [PubMed]
- Wernert, R.; Nguyen, L.H.B.; Iadecola, A.; Weill, F.; Fauth, F.; Monconduit, L.; Carlier, D.; Croguennec, L. Self-Discharge Mechanism of High-Voltage KVPO4F for K-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 14913–14921. [Google Scholar] [CrossRef]
- Caracciolo, L.; Madec, L.; Petit, E.; Gabaudan, V.; Carlier, D.; Croguennec, L.; Martinez, H. Electrochemical Redox Processes Involved in Carbon-Coated KVPO4F for High Voltage K-Ion Batteries Revealed by XPS Analysis. J. Electrochem. Soc. 2020, 167, 130527. [Google Scholar] [CrossRef]
- He, X.-D.; Zhang, L.-M.; Jiang, C.-H.; Chen, C.-H. Elevating Cyclability of an Advanced KVPO4F Cathode via Multi-Component Coating Strategy for High-Performance Potassium-Ion Batteries. Chem. Eng. J. 2022, 433, 134634. [Google Scholar] [CrossRef]
- Kim, H.; Tian, Y.; Ceder, G. Origin of Capacity Degradation of High-Voltage KVPO4F Cathode. J. Electrochem. Soc. 2020, 167, 110555. [Google Scholar] [CrossRef]
- Liao, J.; Hu, Q.; He, X.; Mu, J.; Wang, J.; Chen, C. A Long Lifespan Potassium-Ion Full Battery Based on KVPO4F Cathode and VPO4 Anode. J. Power Sources 2020, 451, 227739. [Google Scholar] [CrossRef]
- Hosaka, T.; Kubota, K.; Hameed, A.S.; Komaba, S. Research Development on K-Ion Batteries. Chem. Rev. 2020, 120, 6358–6466. [Google Scholar] [CrossRef]
- Chen, R.; Bresser, D.; Saraf, M.; Gerlach, P.; Balducci, A.; Kunz, S.; Schroder, D.; Passerini, S.; Chen, J. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem 2020, 13, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, D.; Zhang, Y.; Gong, Z.; Lv, X.; Qin, Q.; Gong, Y. Low-Strain KVPO4F@C as Hyperstable Anode for Potassium-Ion Batteries. Metals 2023, 13, 1038. https://doi.org/10.3390/met13061038
Liu Z, Wang D, Zhang Y, Gong Z, Lv X, Qin Q, Gong Y. Low-Strain KVPO4F@C as Hyperstable Anode for Potassium-Ion Batteries. Metals. 2023; 13(6):1038. https://doi.org/10.3390/met13061038
Chicago/Turabian StyleLiu, Zhaomeng, Da Wang, Yilong Zhang, Zhiqing Gong, Xuehui Lv, Qi Qin, and Yang Gong. 2023. "Low-Strain KVPO4F@C as Hyperstable Anode for Potassium-Ion Batteries" Metals 13, no. 6: 1038. https://doi.org/10.3390/met13061038
APA StyleLiu, Z., Wang, D., Zhang, Y., Gong, Z., Lv, X., Qin, Q., & Gong, Y. (2023). Low-Strain KVPO4F@C as Hyperstable Anode for Potassium-Ion Batteries. Metals, 13(6), 1038. https://doi.org/10.3390/met13061038