Coaxial Electrospinning of CoS1.097@C Core–Shell Fibers Anode Material for High-Performance Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the CoS1.097 Powders
2.2. Synthesis of the CoS1.097@C Core–Shell Fibers
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Abraham, K.M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Letters 2020, 5, 3544–3547. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, R.; Hu, Y.-S.; Avdeev, M.; Chen, L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954. [Google Scholar] [CrossRef]
- Niu, Y.B.; Guo, Y.J.; Yin, Y.X.; Zhang, S.Y.; Wang, T.; Wang, P.; Xin, S.; Guo, Y.G. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv. Mater. 2020, 32, 2001419. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Han, Z.; Tao, S.; Qian, B. Core-shell structured SnSe@C microrod for Na-ion battery anode. J. Energy Chem. 2021, 55, 256–264. [Google Scholar] [CrossRef]
- Pi, Y.Q.; Gan, Z.W.; Yan, M.Y.; Pei, C.Y.; Yu, H.; Ge, Y.W.; An, Q.Y.; Mai, L.Q. Insight into pre-sodiation in Na3V2(PO4)2F3/C @ hard carbon full cells for promoting the development of sodium-ion battery. Chem. Eng. J. 2021, 413, 127565. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Ming, H.; Cao, G.P.; Zhang, W.F.; Ming, J.; Chen, R.J. Recent. advances in nanostructured carbon for so-dium-ion batteries. J. Mater. Chem. A 2020, 8, 1604. [Google Scholar] [CrossRef]
- Zheng, F.; Wei, Z.; Xia, H.; Tu, Y.; Meng, X.; Zhu, K.; Zhao, J.; Zhu, Y.; Zhang, J.; Yang, Y.; et al. 3D MoS2 foam integrated with carbon paper as binder-free anode for high performance sodium-ion batteries. J. Energy Chem. 2021, 65, 26–33. [Google Scholar] [CrossRef]
- Fan, S.; Huang, S.; Chen, Y.; Shang, Y.; Wang, Y.; Kong, D.; Pam, M.E.; Shi, L.; Lim, Y.W.; Shi, Y.; et al. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019, 23, 17–24. [Google Scholar] [CrossRef]
- Zhu, T.; Xiao, Y.; Ren, Y.F.; Zeng, W.; Pan, A.Q.; Zheng, Y.Y.; Liu, Q.B. Unusual formation of CoS0.61Se0.25 anion solid solution with sulfur defects to promote electrocatalytic water reduction. ACS Appl. Energy Mater. 2021, 4, 2976–2982. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.L.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D.X.; Wang, H.E. Growing NiS2 nanosheets on porous carbon mi-crotubes for hybrid sodium-ion capacitors. J. Power Sources 2020, 451, 227737. [Google Scholar] [CrossRef]
- Ren, J.; Shen, M.; Li, Z.; Yang, C.; Liang, Y.; Wang, H.-E.; Li, J.; Li, N.; Qian, D. Towards high-performance all-solid-state asymmetric supercapacitors: A hierarchical doughnut-like Ni3S2@PPy core−shell heterostructure on nickel foam electrode and density functional theory calculations. J. Power Sources 2021, 501, 230003. [Google Scholar] [CrossRef]
- Wang, L.Q.; Han, Z.L.; Zhao, Q.Q.; Yao, X.Y.; Zhu, Y.Q.; Ma, X.L.; Wu, S.D.; Cao, C.B. Engineering yolk-shell P-doped NiS2/C spheres via a MOF-template for high-performance sodium-ion batteries. J. Mater. Chem. A 2020, 8, 8612–8619. [Google Scholar] [CrossRef]
- Ru, J.; He, T.; Chen, B.; Feng, Y.; Zu, L.; Wang, Z.; Zhang, Q.; Hao, T.; Meng, R.; Che, R.; et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 14621–14627. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.L.; Wang, L.; Deng, S.; Zeng, X.Q.; Nie, K.Q.; Duchesne, P.N.; Wang, B.; Liu, S.; Zhou, J.H.; Zhao, F.P.; et al. Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv. Energy Mater. 2016, 7, 1601602. [Google Scholar] [CrossRef]
- Yang, D.; Chen, W.; Zhang, X.; Mi, L.; Liu, C.; Chen, L.; Guan, X.; Cao, Y.; Shen, C. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 19709–19718. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, W.; Zhou, H.; Chen, H.; Huang, Z.; Yan, Z.; Jiang, R.; Wang, C.; Tan, Z.; Kuang, Y. Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem. Eng. J. 2020, 380, 122549. [Google Scholar] [CrossRef]
- Chen, S.; Li, G.; Yang, M.; Xiong, J.; Akter, S.; Mi, L.; Li, Y. Nanotube assembled coral-like ZnS@N, S co-doped carbon: A sodium-ion batteries anode material with outstanding stability and rate performance. Appl. Surf. Sci. 2021, 535, 147748. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Feng, X.; Chen, W.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. In Situ Formation of Co9S8 Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Appl. Mater. Interfaces 2019, 11, 19218–19226. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, K.K.; Zhu, S.C.; Fan, K.; Lyu, L.L.; Yao, H.M.; Li, Y.Y.; Hu, J.L.; Huang, H.T.; Mai, Y.-W.; et al. Fi-ber-in-tube design of Co9S8-Carbon/Co9S8: Enabling efficient sodium storage. Angew. Chem. Int. Ed. 2019, 58, 6239–6243. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Shi, L.D.; He, H.Z.; Cong, G.T.; Zhu, C.Z.; Xu, J. Rationally designed yolk-shell Co9S8-Co1-xS hollow spheres for advanced sodium-ion storage. J. Mater. Chem. A 2021, 9, 23537–23544. [Google Scholar] [CrossRef]
- Lian, Y.J.; Chen, F.J.; Kang, H.Y.; Wu, C.X.; Zhang, M.; Xu, S.L. Co9S8 nanoparticles scaffolded within car-bon-nanoparticles-decorated carbon spheres as anodes for lithium and sodium storage. Appl. Surf. Sci. 2020, 507, 145061. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Xin, H.; Li, D.; Zhao, Y.; Shi, L.; Lin, Y.; Yu, J.; Yu, Z.; Zhu, C.; et al. Coaxial electrospinning synthesis hollow Mo2C@C core-shell nanofibers for high-performance and long-term lithium-ion batteries. Appl. Surf. Sci. 2019, 473, 352–358. [Google Scholar] [CrossRef]
- Li, L.L.; Peng, S.J.; Lee, J.K.Y.; Ji, D.X.; Srinivasan, M.; Ramakrishna, S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017, 39, 111–139. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Qian, Q.; Huang, H.; Chen, Y.; Wang, Z.; Chen, Q.; Yang, J.; Li, J.; Mai, Y.-W. Electrospinning-Based Strategies for Battery Materials. Adv. Energy Mater. 2021, 11, 2000845. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrospinning for flexible sodium-ion batteries. Energy Storage Mater. 2022, 45, 704–719. [Google Scholar] [CrossRef]
- Jung, J.-W.; Lee, C.-L.; Yu, S.; Kim, I.-D. Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 2016, 4, 703–750. [Google Scholar] [CrossRef]
- Wang, H.-G.; Yuan, S.; Ma, D.-L.; Zhang, X.-B.; Yan, J.-M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681. [Google Scholar] [CrossRef]
- Li, A.; Xiong, P.; Zhang, Y.; Shuang, W.; Chang, Z.; Xu, Y.; Bu, X.-H. 2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chem. Eng. J. 2021, 405, 126638. [Google Scholar] [CrossRef]
- Jia, J.; Liu, X.; Mi, R.; Liu, N.; Xiong, Z.; Yuan, L.; Wang, C.; Sheng, G.; Cao, L.; Zhou, X.; et al. Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors. J. Mater. Chem. A 2018, 6, 15330–15339. [Google Scholar] [CrossRef]
- Zhou, D.; Fan, L.-Z. Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 2139–2147. [Google Scholar] [CrossRef]
- Zhou, D.; Yi, J.; Zhao, X.; Yang, J.; Lu, H.; Fan, L.-Z. Confining ultrasmall CoP nanoparticles into nitrogen-doped porous carbon via synchronous pyrolysis and phosphorization for enhanced potassium-ion storage. Chem. Eng. J. 2021, 413, 127508. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Sun, L.P.; Kong, F.H.; Huo, L.H.; Zhao, H. Architecture of porous CoS1.097-C composite nanowire for efficient oxygen reduction reaction. Int. J. Hydrogen Energy 2019, 44, 3681–3689. [Google Scholar]
- Luo, Q.; Wen, J.X.; Liu, G.Z.; Ye, Z.Q.; Wang, Q.F.; Liu, L.; Yang, X.K. Sb2Se3/Sb embedded in carbon nanofibers as flexible and twistable anode for potassium-ion batteries. J. Power Sources 2022, 545, 231917. [Google Scholar] [CrossRef]
- Peng, W.; Wang, Y.; Yang, X.; Mao, L.; Jin, J.; Yang, S.; Fu, K.; Li, G. Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery. Appl. Catal. B Environ. 2020, 268, 118437. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Xian, X. Co9S8@partly-graphitized carbon composites obtained through catalytic graphitization strategy as anode materials for lithium-ions batteries. J. Electroanal. Chem. 2021, 897, 115569. [Google Scholar] [CrossRef]
- Zang, R.; Li, P.; Guo, X.; Man, Z.; Zhang, S.; Wang, C.; Wang, G. Yolk–shell N-doped carbon coated FeS2nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 14051–14059. [Google Scholar] [CrossRef]
- Wei, C.; Han, Y.; Liu, H.; Gan, R.; Ma, W.; Liu, H.; Song, Y.; Zhang, X.; Shi, J.; Ma, C. Enhancing conversion of polysulfides via porous carbon nanofiber interlayer with dual-active sites for lithium-sulfur batteries. J. Colloid. Interface Sci. 2022, 625, 946–955. [Google Scholar] [CrossRef]
- Chen, H.; Niu, Y.; Meng, Y.; Ren, X.; Huang, Y.; Wang, M.; Lau, W.-M.; Zhou, D. Constructing nitrogen-doped porous carbon immobilized Co9S8 composite as high-performance anode material for sodium-ion batteries. J. Alloy. Compd. 2022, 923, 166373. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, X. Direct growth of flower-shaped CoS1.097 nanoflakes on flexible carbon cloth: An ultrastable cycle durability anode for reversible sodium storage. Scr. Mater. 2020, 186, 114–120. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Hou, T.; Hu, X.; Li, X.; Sun, X.; Cai, S.; Ji, H.; Zheng, C. Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chin. Chem. Lett. 2018, 29, 187–190. [Google Scholar] [CrossRef]
- Tian, G.; Song, Y.; Luo, X.; Zhao, Z.; Han, F.; Chen, J.; Huang, H.; Tang, N.; Dsoke, S. ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries. J. Alloy. Compd. 2021, 877, 160299. [Google Scholar] [CrossRef]
- Xie, K.Y.; Li, L.; Deng, X.; Zhou, W.; Shao, Z.P. A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. J. Alloys Compd. 2017, 726, 394–402. [Google Scholar] [CrossRef]
Sample Name | Current Density | Cycles | Capacity | Ref./Year |
---|---|---|---|---|
Co9S8@NPC | 50 mA g−1 | 100 | 275.3 mAh g−1 | [40]/2022 |
SnS/CNTs | 500 mA g−1 | 100 | 210 mAh g−1 | [42]/2018 |
ZnS/N-CX | 500 mA g−1 | 270 | 175 mAh g−1 | [43]/2021 |
CoS2/rGO | 500 mA g−1 | 100 | 206 mAh g−1 | [44]/2017 |
CoS1.097@C core—shell fibers | 50 mA g−1 500 mA g−1 | 100 2000 | 278 mAh g−1 216.3 mAh g−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, Y.; Zhou, D. Coaxial Electrospinning of CoS1.097@C Core–Shell Fibers Anode Material for High-Performance Sodium-Ion Batteries. Metals 2024, 14, 351. https://doi.org/10.3390/met14030351
Chen H, Li Y, Zhou D. Coaxial Electrospinning of CoS1.097@C Core–Shell Fibers Anode Material for High-Performance Sodium-Ion Batteries. Metals. 2024; 14(3):351. https://doi.org/10.3390/met14030351
Chicago/Turabian StyleChen, Hongming, Yan Li, and Dan Zhou. 2024. "Coaxial Electrospinning of CoS1.097@C Core–Shell Fibers Anode Material for High-Performance Sodium-Ion Batteries" Metals 14, no. 3: 351. https://doi.org/10.3390/met14030351
APA StyleChen, H., Li, Y., & Zhou, D. (2024). Coaxial Electrospinning of CoS1.097@C Core–Shell Fibers Anode Material for High-Performance Sodium-Ion Batteries. Metals, 14(3), 351. https://doi.org/10.3390/met14030351