Spatial-Time Inhomogeneity Due to the Portevin-Le Chatelier Effect Depending on Stiffness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Spatial-Time Inhomogeneity Depending on the Stiffness of Loading System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tretyakova, T.V.; Wildemann, V.E. Plastic Strain Localization and Its Stages in Al–Mg Alloys. Phys. Mesomech. 2018, 21, 314–319. [Google Scholar] [CrossRef]
- Bell, J.F. Eksperimental’nye Osnovy Mekhaniki Deformiruemykh Tverdykh tel. Ch.2. Konechnye Deformatsii [The Experimental Foundations of Solid Mechanics. Part 2. Finite Deformation]; Nauka: Moscow, Russia, 1984; 432p. [Google Scholar]
- Klueh, R.L. Discontinuous creep in short-range order alloys. Mater. Sci. Eng. 1982, 54, 65–80. [Google Scholar] [CrossRef]
- Yilmaz, A. The Portevin-Le Chatelier effect: A review of experimental findings. Sci. Technol. Adv. Mater 2011, 12, 063001. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, F.; Kyriakides, S.; Yun, H.D. Bending of steel tubes with Lüders bands. Int. J. Plast. 2004, 20, 1199–1225. [Google Scholar] [CrossRef]
- Tretyakova, T.V.; Wildemann, V.E. Spatial-Time Inhomogeneity of the Processes of Inelastic Deformation of Metals; Fizmatlit: Moscow, Russia, 2016; p. 120. [Google Scholar]
- Trusov, P.V.; Chechulina, E.A. Serrated yielding: Physical mechanisms, experimental dates, macro-phenomenological models. PNRPU Mech. Bull. 2014, 3, 186–232. [Google Scholar]
- Tretyakova, T.V.; Wildemann, V.E. Experimental study of the influence of strain-stress state on the jerky flow in metals and alloys. Procedia Struct. Integr. 2019, 17, 906–913. [Google Scholar] [CrossRef]
- Vildeman, V.E.; Sokolkin, Y.V.; Tashkinov, A.A. Mechanics of Inelastic Deformation and Fracture of Composite Materials; Nauka: Moscow, Russia, 1997; p. 288. [Google Scholar]
- Wildemann, V.E.; Lomakin, E.V.; Tretyakov, M.P.; Tretyakova, T.V.; Lobanov, D.S. Experimental Studies of Postcritical Deformation and Fracture of Structural Materials; PNRPU: Perm, Russia, 2018; 156p. [Google Scholar]
- Tretyakov, M.P.; Wildemann, V.E.; Lomakin, E.V. Failure of materials on the postcritical deformation stage at different types of the stress-strain state. Procedia Struct. Integr. 2016, 2, 3721–3726. [Google Scholar] [CrossRef]
- Tretyakov, M.P.; Tretyakova, T.V.; Wildemann, V.E. Regularities of mechanical behavior of steel 40Cr during the postcritical deformation of specimens in condition of necking effect at tension. Frat. Ed Integrità Strutt. 2018, 43, 145–153. [Google Scholar] [CrossRef]
- Vildeman, V.E.; Tretyakov, M.P. Analysis of the effect of loading system rigidity on postcritical material strain. J. Mach. Manuf. Reliab. 2013, 42, 219–226. [Google Scholar] [CrossRef]
- Wildemann, V.E.; Lomakin, E.V.; Tretyakov, M.P. Effect of vibration stabilization of the process of postcritical deformation. Dokl. Phys. 2016, 61, 147–151. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Di Luizo, G. Nonlocal microplane model with strain-softening yield limits. Int. J. Solids Struct. 2004, 41, 7209–7240. [Google Scholar] [CrossRef]
- Mansouri, L.Z.; Coër, J.; Thuillier, S.; Laurent, H.; Manach, P.Y. Investigation of Portevin-Le Châtelier effect during Erichsen test. Int. J. Mater. Form. 2020, 13, 687–697. [Google Scholar] [CrossRef]
- Rousselier, G.; Morgeneyer, T.F.; Ren, S.; Mazière, M.; Forest, S. Interaction of the Portevin–Le Chatelier phenomenon with ductile fracture of a thin aluminum CT specimen: Experiments and simulations. Int. J. Fract. 2017, 206, 95–122. [Google Scholar] [CrossRef]
- Dahdouh, S.; Mehenni, M.; Ait-Amokhtar, H. Kinetics of formation and propagation of type A Portevin-Le Chatelier bands in the presence of a small circular hole. J. Alloy. Compd. 2021, 885, 160982. [Google Scholar] [CrossRef]
- Choi, Y.; Ha, J.; Lee, M.G.; Korkolis, Y.P. Observation of Portevin-le Chatelier effect in aluminum alloy 7075-w under a heterogeneous stress field. Scr. Mater. 2021, 205, 114178. [Google Scholar] [CrossRef]
- Ren, S.C.; Morgeneyer, T.F.; Mazière, M.; Forest, S.; Rousselier, G. Effect of Lüders and Portevin–Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations. Int. J. Plast. 2021, 136, 102880. [Google Scholar] [CrossRef]
- Ren, S.C.; Morgeneyer, T.F.; Mazière, M.; Forest, S.; Rousselier, G. Portevin-Le Chatelier effect triggered by complex loading paths in an Al–Cu aluminium alloy. Philos. Mag. 2019, 99, 659–678. [Google Scholar] [CrossRef]
- Le Cam, J.B.; Robin, E.; Leotoing, L.; Guines, D. Calorific signature of PLC bands under biaxial loading conditions in Al-Mg alloys. Residual Stress Infrared Imaging Hybrid Tech. Inverse Probl. 2018, 8, 29–35. [Google Scholar] [CrossRef]
- Skripnyak, V.V.; Skripnyak, V.A. Localization of Plastic Deformation in Ti-6Al-4V. Alloy Met. 2021, 11, 1745. [Google Scholar] [CrossRef]
- Brünig, M.; Gerke, S.; Koirala, S. Biaxial Experiments and Numerical Analysis on Stress-State-Dependent Damage and Failure Behavior of the Anisotropic Aluminum Alloy EN AW-2017A. Metals 2021, 11, 1214. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, C.; Zhang, C.; Sun, S. The Application of DIC Technique to Evaluate Residual Tensile Strength of Aluminum Alloy Plates with Multi-Site Damage of Collinear and Non-Collinear Cracks. Metals 2019, 9, 118. [Google Scholar] [CrossRef]
- Mäkinen, T.; Ovaska, M.; Laurson, L.; Alava, M.J. Portevin–Le Chatelier effect: Modeling the deformation bands and stress-strain curves. Mater Theory 2022, 6, 15. [Google Scholar] [CrossRef]
- Xu, J.; Holmedal, B.; Hopperstad, O.S.; Maník, T.; Marthinsen, K. Dynamic strain ageing in an AlMg alloy at different strain rates and temperatures: Experiments and constitutive modelling. Int. J. Plast. 2022, 151, 103215. [Google Scholar] [CrossRef]
Element | Al | Mg | Mn | Fe | Si | Zn | Ti | Cu | Be |
Composition, %.wt. | 92.55 | 6.12 | 0.84 | 0.27 | 0.17 | 0.005 | 0.039 | 0.001 | 0.005 |
Set | Number of Plate Springs | Setting-Up of Plate Springs | Stiffness, MN/m |
---|---|---|---|
1 | - | - | 120 |
2 | 10 | < < | 50 |
3 | 2 | < > | 18 |
4 | 10 | < > | 5 |
Stiffness of the Loading System, MN/m | 120 | 50 | 18 | 5 |
Critical strain of the onset of the PLC effect, % | 2.36 | 2.51 | 2.85 | 3.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tretyakova, T.; Tretyakov, M. Spatial-Time Inhomogeneity Due to the Portevin-Le Chatelier Effect Depending on Stiffness. Metals 2023, 13, 1054. https://doi.org/10.3390/met13061054
Tretyakova T, Tretyakov M. Spatial-Time Inhomogeneity Due to the Portevin-Le Chatelier Effect Depending on Stiffness. Metals. 2023; 13(6):1054. https://doi.org/10.3390/met13061054
Chicago/Turabian StyleTretyakova, Tatyana, and Mikhail Tretyakov. 2023. "Spatial-Time Inhomogeneity Due to the Portevin-Le Chatelier Effect Depending on Stiffness" Metals 13, no. 6: 1054. https://doi.org/10.3390/met13061054
APA StyleTretyakova, T., & Tretyakov, M. (2023). Spatial-Time Inhomogeneity Due to the Portevin-Le Chatelier Effect Depending on Stiffness. Metals, 13(6), 1054. https://doi.org/10.3390/met13061054