Effect of Thiourea on Lead Release from Lead-Bearing Jarosite under Freeze–Thaw Cycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Simulated Lead-Bearing Jarosite
2.3. Procedure of T-FTC
2.4. Sequential Extraction Scheme
2.5. Toxicity Characteristic Leaching Procedure
2.6. Analysis
2.6.1. Determination of Elemental Composition
2.6.2. Other Analyses
3. Results and Discussion
3.1. Effect of Thiourea on Release of Lead, Iron, and Sulfate under Freeze–Thaw Condition
3.1.1. Effect of Solution pH
3.1.2. Effect of Thiourea Concentration
3.1.3. Effect of Freeze–Thaw Cycles
3.1.4. Effect of Freezing Temperature
3.1.5. Effect of Freeze–Thaw Methods
3.2. Effect of Thiourea Freeze–Thaw Cycles on the Speciation of Lead
3.3. Ion Migration Changes in T-FTC Process of Lead Jarosite
3.4. Environmental Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kushwaha, P.; Agarwal, M.; Ghosh, A. Value-added products from jarosite hazardous waste: A review. Mater. Today Proc. 2022, 76, 201–205. [Google Scholar] [CrossRef]
- Eftekhari, N.; Kargar, M.; Rokhbakhsh Zamin, F.; Rastakhiz, N.; Manafi, Z. A review on various aspects of jarosite and its utilization potentials. Ann. Chim.-Sci. Mater. 2020, 44, 43–52. [Google Scholar] [CrossRef]
- Asimi, A.; Gharibi, K.; Abkhoshk, E.; Moosakazemi, F.; Chelgani, S.C. Effects of Operational Parameters on the Low Contaminant Jarosite Precipitation Process-an Industrial Scale Study. Materials 2020, 13, 4662. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Zhang, G.; Kang, J.; Wang, C. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy. Chem. Eng. J. Adv. 2020, 3, 100023. [Google Scholar] [CrossRef]
- Ge, H.; Pan, Z.; Xie, F.; Lu, D.; Wang, W.; Wu, S. Recovery of Valuable Metals by Roasting of Jarosite in Cement Kiln. Metals 2023, 13, 250. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Gilmour, S.; Fox, N.; Olin, P. Geometallurgical characterization of non-ferrous historical slag in western Tasmania: Identifying reprocessing options. Minerals 2019, 9, 415. [Google Scholar] [CrossRef]
- Li, L.; Tian, S.; Li, Y.; Li, J.; Huang, J.; Hu, X. Study on the Role of Quartz in the Bio-Oxidation of Sulfide Minerals from Mine Solid Waste. Bull. Environ. Contam. Toxicol. 2021, 107, 1103–1110. [Google Scholar] [CrossRef]
- Hage, J.T.L.; Schuiling, R.D. Comparative column elution of jarosite waste and its autoclaved product-evidence for the immobilization of deleterious elements in jarosite. Miner. Eng. 2000, 13, 287–296. [Google Scholar] [CrossRef]
- Gwyther, D. Impact of the deposition of jarosite on deepwater meiobenthos in southeastern Australia. Mar. Pollut. Bull. 2004, 48, 997–1003. [Google Scholar] [CrossRef]
- Smeaton, C. Investigating the Susceptibility of Jarosite Minerals to Reduce Dissolution by a Dissimilatory Metal Reducing Bacterium. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2012. [Google Scholar]
- Dutrizac, J.E.; Kaiman, S. Synthesis and properties of jarosite-type compounds. Can. Mineral. 1976, 14, 151–158. [Google Scholar]
- Dutrizac, J.E. Factors affecting alkali jarosite precipitation. Metall. Trans. B 1983, 14, 531–539. [Google Scholar] [CrossRef]
- Ripmeester, J.A.; Ratcliffe, C.I.; Dutrizac, J.E.; Jambor, J.L. Hydronium ion in the alunite-jarosite group. Can. Mineral. 1986, 24, 435–447. [Google Scholar]
- Viñals, J.; Nunez, C.; Carrasco, J. Leaching of gold, silver and lead from plumbojarosite-containing hematite tailings in HCl CaCl2 media. Hydrometallurgy 1991, 26, 179–199. [Google Scholar] [CrossRef]
- Smith, A.M.; Dubbin, W.E.; Wright, K.; Hudson-Edwards, K.A. Dissolution of lead-and lead-arsenic-jarosites at pH 2 and 8 and 20 °C: Insights from batch experiments. Chem. Geol. 2006, 229, 344–361. [Google Scholar] [CrossRef]
- Reyes, I.A.; Patiño, F.; Flores, M.U.; Pandiyan, T.; Cruz, R.; Gutiérrez, E.J.; Flores, V.H. Dissolution rates of jarosite-type compounds in H2SO4 medium: A kinetic analysis and its importance on the recovery of metal values from hydrometallurgical wastes. Hydrometallurgy 2017, 167, 16–29. [Google Scholar] [CrossRef]
- Nolasco, M.C.; Flores, L.F.; Gutiérrez, E.J.; Aguilar, J.; Palacios, E.G.; Flores, M.U.; Reyes, I.A. Acid dissolution of jarosite-type compounds: Effect of the incorporation of divalent cations into the structure on the reaction rate. Hydrometallurgy 2022, 212, 105907. [Google Scholar] [CrossRef]
- Hoeber, L.; Steinlechner, S. A comprehensive review of processing strategies for iron precipitation residues from zinc hydrometallurgy. Clean. Eng. Technol. 2021, 4, 100214. [Google Scholar] [CrossRef]
- Wang, R.; Yan, Q.; Su, P.; Shu, J.; Chen, M.; Xiao, Z.; Cheng, Z. Metal mobility and toxicity of zinc hydrometallurgical residues. Process Saf. Environ. Prot. 2020, 144, 366–371. [Google Scholar] [CrossRef]
- Song, X.; Ali, M.; Zhang, X.; Sun, H.; Wei, F. Stakeholder coordination analysis in hazardous waste management: A case study in China. J. Mater. Cycles Waste Manag. 2021, 23, 1873–1892. [Google Scholar] [CrossRef]
- Comel, J.; Meux, E.; Leclerc, N.; Diliberto, S.; Pierrat, P.; Muhr, H. Use of Phytic Acid for the Removal of Iron in Hot Acidic Leachate from Zinc Hydrometallurgy. JOM 2021, 73, 1652–1660. [Google Scholar] [CrossRef]
- Trueman, A.M.; McLaughlin, M.J.; Mosley, L.M.; Fitzpatrick, R.W. Composition and dissolution kinetics of jarosite-rich segregations extracted from an acid sulfate soil with sulfuric material. Chem. Geol. 2020, 543, 119606. [Google Scholar] [CrossRef]
- Gao, D.; Bai, E.; Yang, Y.; Zong, S.; Hagedorn, F. A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling. Soil Biol. Biochem. 2021, 159, 108283. [Google Scholar] [CrossRef]
- Xu, G.; Zheng, Q.; Yang, X.; Yu, R.; Yu, Y. Freeze-thaw cycles promote vertical migration of metal oxide nanoparticles in soils. Sci. Total Environ. 2021, 795, 148894. [Google Scholar] [CrossRef]
- Sun, B.; Ren, F.; Ding, W.; Zhang, G.; Huang, J.; Li, J.; Zhang, L. Effects of freeze-thaw on soil properties and water erosion. Soil Water Res. 2021, 16, 205–216. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Y.; Wu, S.; Lu, Q. Simulated response of soil organic carbon density to climate change in the Northern Tibet permafrost region. Geoderma 2022, 405, 115455. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Adrees, M.; Rizvi, H.; Zia-ur-Rehman, M.; Hannan, F.; Ok, Y.S. Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 17859–17879. [Google Scholar] [CrossRef]
- Guo, P.; Song, Y.; Xie, L.; Zhang, X.; Li, M.; Zhang, S. Effects of Freezing and Thawing on Adsorption/Desorption Characteristics of Pb and Cd in Black Soil and Brown Soil. J. Jilin Univ. Earth Sci. Ed. China 2012, 01, 229–235. [Google Scholar]
- Dang, X.; Zhang, Y.; Yu, N.; Zhang, Y.; Song, Y. Effects of freeze-thaw cycles on the speciation of Cd in soils. Chin. J. Soil Sci. 2008, 39, 826–830. [Google Scholar]
- Guo, P.; Li, Y.; Zhang, Y.; Ming, L.; Zhang, S.; Li, Y. Effects of freeze-thaw cycles on heavy metal adsorption in soils. J. Jilin Univ. Sci. Ed. China 2012, 50, 593. [Google Scholar]
- Zhang, S. Effects of Freeze-Thaw Cycles on Migration and Transformation of Cd in Black Soil of Typical Farmland in Northeast China. Master’s Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Meng, Z.; Huang, S.; Xu, T.; Deng, Y.; Lin, Z.; Wang, X. Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging. Environ. Pollut. 2020, 263, 114449. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, H.; Fan, Q.; Cen, J.; Zhang, Y. Effects of freeze-thaw cycles on migration of colloids and colloidal-bound lead in soil. J. Agro-Environ. Sci. China 2019, 38, 342–347. [Google Scholar]
- Adamo, P.; Denaix, L.; Terribile, F.; Zampella, M. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma 2003, 117, 347–366. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, G.; Wang, J. Effects of freezing-thawing frequency and moisture content on cadmium speciation in black soil. Chin. J. Environ. Sci. 2007, 27, 693–697. [Google Scholar]
- Li, Y.; Kang, C.; Zhang, Y.; Ming, L.; Zhang, S.; Guo, P. Leaching behavior of heavy metal Pb in contaminated soil under freeze-thaw cycles influenced by dissolved organic matter. J. Jilin Univ. Earth Sci. Ed. China 2013, 43, 945–952. [Google Scholar]
- Rui, D.H.; Wu, Z.P.; Wu, Y.F.; Chen, X.; Liu, J.F.; Ding, J. Synergistic remediation of Cd and Pb-contaminated sticky soil by freezing-thawing and chemical leaching method. Trans. Chin. Soc. Agric. Eng. 2018, 34, 199–205. [Google Scholar]
- Rui, D.; Wu, W.; Zhang, H.; Li, G.; Wang, S.; Ito, Y. Optimization analysis of heavy metal pollutants removal from fine-grained soil by freeze-thaw and washing technology. Cold Reg. Sci. Technol. 2020, 173, 103025. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Li, P.; Xu, G.; Shi, P.; Zhang, Y. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 2019, 334, 1–8. [Google Scholar] [CrossRef]
- Ilyas, S.; Munir, H.; Kim, H.; Srivastava, R.R. Urban Mining of Precious Metals with Thiosulfate and Thiourea as Lixiviant. In Sustainable Urban Mining of Precious Metals; CRC Press: Boca Raton, FL, USA, 2021; pp. 123–148. [Google Scholar]
- Jun, P.; Wei, Y.J.; Shi, M.Q.; Wu, J.H.; Wang, Q.W.; Zhang, L.; Hui, L.; Xu, Y. Spontaneous separation of Pb from PbSO4-coprecipitated jarosite using freeze-thaw cycling with thiourea. Trans. Nonferrous Met. Soc. China 2022, 32, 1019–1030. [Google Scholar]
- Jun, P.; He, L.H.; Hui, L.; Sun, Z.M.; Xu, Y. The Synthesis of Lead-Bearing Jarosite and Its Occurrence Characteristic and Leaching Toxicity Evaluation. Metals 2023, 13, 941. [Google Scholar]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; López-Sánchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 52, 330–341. [Google Scholar] [CrossRef]
- Min, X.B.; Xie, X.D.; Chai, L.Y.; Liang, Y.J.; Mi, L.I.; Yong, K.E. Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans. Nonferrous Met. Soc. China 2013, 23, 208–218. [Google Scholar] [CrossRef]
- Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric determination of iron (II) with 1,10-phenanthroline in the presence of large amounts of iron (III). Talanta 1974, 21, 314–318. [Google Scholar] [CrossRef]
- Gupta, P.C. Analytical chemistry of thiocarbamides: I. Quantitative determination of thiourea. Fresenius’ Z. Anal. Chem. 1963, 196, 412–431. [Google Scholar] [CrossRef]
Items | Volume (mL) | Concentration (g/L) | Percentage (%) | |||
---|---|---|---|---|---|---|
Pb | tu | Pb | tu | |||
Icicle | upper part | 13.2 | 0.53 | 36.6 | 7.10 | 26.5 |
lower part | 12.8 | 0.66 | 54.2 | 8.57 | 38.0 | |
Unfrozen Solution | upper part | 2.20 | 4.81 | 120 | 10.7 | 14.5 |
lower part | 2.50 | 4.92 | 130 | 12.5 | 17.8 |
Element | Identification Standards for Hazardous Waste/(mg·L−1) | Leaching Toxicity before Treatment/(mg·L−1) | Leaching Toxicity after T-FTC/(mg·L−1) |
---|---|---|---|
Pb | 5 | 238 | 42.1 |
No. | Time (h) | Concentration of Lead in Solution (mg/L) | ηPb * (%) |
---|---|---|---|
1 | 24 | 41.6 | 0.07 |
2 | 48 | 38.7 | 0.20 |
3 | 72 | 29.9 | 0.35 |
4 | 96 | 28.7 | 0.54 |
5 | 120 | 26.3 | 0.75 |
6 | 144 | 21.4 | 0.97 |
7 | 168 | 18.6 | 1.18 |
8 | 192 | 14.3 | 1.37 |
9 | 216 | 12.9 | 1.57 |
10 | 240 | 13.1 | 1.78 |
11 | 264 | 14.1 | 2.04 |
12 | 288 | 13.2 | 2.30 |
13 | 312 | 12.5 | 2.57 |
14 | 336 | 12.4 | 2.86 |
15 | 360 | 12.5 | 3.17 |
16 | 384 | 11.8 | 3.48 |
17 | 432 | 12.7 | 3.86 |
18 | 456 | 12.8 | 4.27 |
19 | 480 | 12.4 | 4.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Liu, H.; Shen, Y.; He, L.; Wei, Y.; Yan, X. Effect of Thiourea on Lead Release from Lead-Bearing Jarosite under Freeze–Thaw Cycling. Metals 2023, 13, 1053. https://doi.org/10.3390/met13061053
Peng J, Liu H, Shen Y, He L, Wei Y, Yan X. Effect of Thiourea on Lead Release from Lead-Bearing Jarosite under Freeze–Thaw Cycling. Metals. 2023; 13(6):1053. https://doi.org/10.3390/met13061053
Chicago/Turabian StylePeng, Jun, Hui Liu, Yujun Shen, Luhua He, Yangjin Wei, and Xu Yan. 2023. "Effect of Thiourea on Lead Release from Lead-Bearing Jarosite under Freeze–Thaw Cycling" Metals 13, no. 6: 1053. https://doi.org/10.3390/met13061053
APA StylePeng, J., Liu, H., Shen, Y., He, L., Wei, Y., & Yan, X. (2023). Effect of Thiourea on Lead Release from Lead-Bearing Jarosite under Freeze–Thaw Cycling. Metals, 13(6), 1053. https://doi.org/10.3390/met13061053