Experimental and Numerical Investigation on the Square Hole Hydro-Piercing Process
Abstract
:1. Introduction
2. Principle of Square Hole Hydro-Piercing
3. Experimental Scheme and Modeling Details
3.1. Materials
3.2. Experimental Procedure
3.3. Finite Element Model
4. Results and Discussion
4.1. Deformation Sequence Analysis
4.2. Effect of Internal Pressure on Collapse around the Hole
4.3. Effect of Punch Corner Radius on the Collapse around the Hole
5. Conclusions
- In the square hole hydro-piercing process, a stress concentration occurs at the vertex of the square hole, making it easy to satisfy the yielding and fracture criteria, and then the crack expands to the midpoints of the square hole with the movement of the punch, implying that the deformations and fractures at different positions are asynchronous.
- When the internal pressure is insufficient, the collapse depths at different positions are obviously different. However, the collapse depths of the midpoints of the square hole will be almost the same when internal pressure increases to 60 MPa, meaning that increasing the internal pressure can improve the uniformity of deformation.
- With the increasing of internal pressure, the degree of collapse can be decreased. When the internal pressure increases from 10 MPa to 60 MPa, the collapse depth values hA, hB, hC decrease to 1.5 mm, 1.6 mm, and 1.6 mm, respectively, from 4.4 mm, 5.2 mm, and 4.6 mm, respectively. Additionally, punch corner radius has little effect on the collapse around the hole.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikhare, C.; Weiss, M.; Hodgson, P.D. Die closing force in low pressure tube hydroforming. J. Mater. Process. Technol. 2010, 210, 2238–2244. [Google Scholar] [CrossRef]
- Zhang, X.L.; He, J.Q.; Chu, G.N.; Yuan, S.J. Experimental research on deformation and dimensional accuracy of rectangular-section tubular part during open die hydro-pressing process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 705–714. [Google Scholar] [CrossRef]
- Han, C.; Zhuang, Y.P.; Li, J. Thickness distribution uniformity improvement and forming pressure reduction of stepped tubular components by axial hydro-pressing method. Int. J. Adv. Manuf. Technol. 2022, 121, 2615–2630. [Google Scholar] [CrossRef]
- Yamashita, M.; Mori, T.; Nikawa, M. Hole Making Process of Metal and Composite Sheets by Impact Hydraulic Pressure. Proc. Eng. 2017, 207, 1558–1563. [Google Scholar] [CrossRef]
- Aravind, U.; Chakkingal, U.; Venugopal, P. A review of fine blanking: Influence of die design and process parameters on edge quality. J. Mater. Eng. Perform. 2021, 30, 1–32. [Google Scholar] [CrossRef]
- Finckenstein, E.V.; K. Kleiner, M.; Szücs, E.; Homberg, W. In-process punching with pressure fluids in sheet metal forming. CIRP Ann. Manuf. Technol. 1998, 47, 207–212. [Google Scholar] [CrossRef]
- Koc, M.; Altan, T. Prediction of Forming Limits and Parameters in the Tube Hydroforming Process. Int. J. Mach. Tool. Manuf. 2002, 42, 123–138. [Google Scholar] [CrossRef]
- Yamashita, M.; Sugiure, K.; Nikawa, M. Punchless piercing process of aluminum tube wall by impulsive water pressure. Mater. Trans. 2023, 6, 414–420. [Google Scholar] [CrossRef]
- Choi, S.K.; Kim, W.T.; Moon, Y.H. Analysis of deformation surrounding a hole produced by tube hydro-piercing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 1091–1097. [Google Scholar] [CrossRef]
- Su, H.B.; Liu, G.; Chen, X.P.; Qi, J. Influence of hydro-pressure inside tube on hydropiercing. Forg. Stamp. Technol. 2011, 36, 19–22. [Google Scholar]
- Su, H.B.; Liu, G.; Chen, X.P. Simulation analysis and experimental research on hydro-piercing. J. Net. Form. Eng. 2017, 9, 73–78. [Google Scholar]
- Manabe, K.; Amino, M.; Nakamura, S. FE Analysis on Local Thinning and Fracture Phenomenon in Hydroform of Tube Components. Adv. Technol. Plast. 1999, 1, 12–21. [Google Scholar]
- Manabe, K.; Amino, M. Effects of Process Parameters and Material Properties on Deformation Process in Tube Hydroforming. J. Mater. Process. Technol. 2002, 12, 285–291. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Wu, R.K. Process and loading path design for hydraulic compound forming of rectangular tubes. Int. J. Adv. Manuf. Technol. 2017, 91, 2135–2142. [Google Scholar] [CrossRef]
- Kim, S.S.; Han, C.S.; Lee, Y.S. Development of a new burr-free hydro-mechanical punching. J. Mater. Process. Technol. 2005, 162, 524–529. [Google Scholar] [CrossRef]
- Liu, G.; Lin, J.F.; Wand, G.; Su, H.B.; Chen, X.P.; Jiang, H.M. Influence of tube properties on quality of hydropiercing. Trans. Nonferrous Met. Soc. China 2012, 21, 456–460. [Google Scholar] [CrossRef]
- Yang, T.; Hao, J.; Liu, G. Influence of Punch Shape on the Fracture Surface Quality of Hydropiercing Holes. J. Harbin. Inst. Technol. 2014, 3, 85–90. [Google Scholar]
- Shiomi, M.; Ueda, Y.; Osakada, K. Piercing of Steel Sheet by using Hydrostatic Pressure. CIRP Ann. Manuf. Technol. 2006, 55, 255–258. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Dai, W.H.; Chen, C.C. Investigation of punch shape design in tube hydro-piercing processes. Int. J. Adv. Manuf. Technol. 2020, 110, 2211–2220. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Li, F.; Shi, W.Y.; Li, X.W.; Fang, W.B. Research on piercing of aluminum sheet assisted with magnetic medium. Int. J. Adv. Manuf. Technol. 2019, 104, 4735–4744. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Li, F.; Mu, Y.Y.; Xu, J. Comprehensive evaluation of process parameters optimization for sheet piercing assisted by magnetic medium based on grey relational analysis. Results Phys. 2020, 19, 103288. [Google Scholar] [CrossRef]
- Wang, P.Y.; Wan, G.H.; Jin, J.G.; Wang, Y.C.; Xiang, N.; Zhao, X.K.; Zhao, X.N.; Yuan, B.X.; Wang, Z.J. Subregional flexible-die control in magnetorheological pressure forming. J. Mater. Process. Technol. 2022, 307, 117698. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Phan, H.N.; Tsui, H.S.R. Investigation of Punch Shape and Loading Path Design in Hydro-Flanging Processes of Aluminum Alloy Tubes. Metals 2021, 11, 636. [Google Scholar] [CrossRef]
- Liu, W.; Hao, J.; Liu, G.; Gao, G.; Yuan, S. Influence of punch shape on geometrical profile and quality of hole piercing-flanging under high pressure. Int. J. Adv. Manuf. Technol. 2016, 86, 1253–1262. [Google Scholar] [CrossRef]
- Kumar, S.; Ahmed, M.; Panthi, S.K. Effect of Punch Profile on Deformation Behaviour of AA5052 Sheet in Stretch Flanging Process. Arch. Civil Mech. Eng. 2020, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.Y.; Chen, J.; Chen, J.S. Interaction Effect of Cracks and Anisotropic Influence on Degradation of Edge Stretchability in Hole-expansion of Advanced High Strength Steel. Int. J. Mech. Sci. 2016, 105, 348–359. [Google Scholar] [CrossRef]
- Dixit, U.S.; Joshi, S.N.; Davim, J.P. Incorporation of material behavior in modeling of metal forming and machining processes: A review. Mater. Des. 2011, 32, 3655–3670. [Google Scholar] [CrossRef]
- Yildiz, R.A. Numerical analysis of the damage evolution of DP600 steel using Gurson-Tvergaard-Needleman model. Steel. Res. Int. 2023, 94, 2200147. [Google Scholar] [CrossRef]
- Hassannejadasl, A.; Green, D.E.; Altenhof, W.J.; Maris, C.; Mason, M. Numerical modeling of multi-stage tube hydropiercing. Mater. Des. 2013, 46, 235–246. [Google Scholar] [CrossRef]
- Xie, W.C.; Han, C.; Chu, G.N.; Yuan, S.J. Research on hydro-pressing process of closed section tubular parts. Int. J. Adv. Manuf. Technol. 2015, 80, 1149–1157. [Google Scholar] [CrossRef]
Mechanical Parameters | Value |
---|---|
Yield stress, σs (MPa) | 430 |
Ultimate tensile strength, σb (MPa) | 750 |
Total elongation, δ (%) | 23 |
Young’s modulus, E (GPa) | 195 |
Poission’s ratio, ν | 0.3 |
Strength coefficient, K (MPa) | 982 |
Strain hardening exponent, n | 0.158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Wang, X.; Wang, Q.; Fan, Z.; Ling, C.; Liu, X.; Chu, G. Experimental and Numerical Investigation on the Square Hole Hydro-Piercing Process. Metals 2023, 13, 1107. https://doi.org/10.3390/met13061107
Sun L, Wang X, Wang Q, Fan Z, Ling C, Liu X, Chu G. Experimental and Numerical Investigation on the Square Hole Hydro-Piercing Process. Metals. 2023; 13(6):1107. https://doi.org/10.3390/met13061107
Chicago/Turabian StyleSun, Lei, Xiaofeng Wang, Qingfeng Wang, Zhigang Fan, Chen Ling, Xiehan Liu, and Guannan Chu. 2023. "Experimental and Numerical Investigation on the Square Hole Hydro-Piercing Process" Metals 13, no. 6: 1107. https://doi.org/10.3390/met13061107
APA StyleSun, L., Wang, X., Wang, Q., Fan, Z., Ling, C., Liu, X., & Chu, G. (2023). Experimental and Numerical Investigation on the Square Hole Hydro-Piercing Process. Metals, 13(6), 1107. https://doi.org/10.3390/met13061107