Structure and Mechanical Behavior of Heat-Resistant Steel Manufactured by Multilayer Arc Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Wall Appearance
3.2. Metallography
3.3. Microhardness
3.4. Static Tensile Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [Google Scholar] [CrossRef]
- Jafari, D.; Vaneker, T.H.J.; Gibson, I. Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts. Mater. Des. 2021, 202, 109471. [Google Scholar] [CrossRef]
- Panchenko, O.; Kladov, I.; Kurushkin, D.; Zhabrev, L.; Ryl’kov, E.; Zamozdra, M. Effect of Thermal History on Microstructure Evolution and Mechanical Properties in Wire Arc Additive Manufacturing of HSLA Steel Functionally Graded Components. Mater. Sci. Eng. A 2022, 851, 143569. [Google Scholar] [CrossRef]
- Rosli, N.A.; Alkahari, M.R.; Abdollah, M.F.B.; Maidin, S.; Ramli, F.R.; Herawan, S.G. Review on Effect of Heat Input for Wire Arc Additive Manufacturing Process. J. Mater. Res. Technol. 2021, 11, 2127–2145. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Waqar, S.; Garcia-Collado, A.; Gupta, M.K.; Krolczyk, G.M. A Technical Overview of Metallic Parts in Hybrid Additive Manufacturing Industry. J. Mater. Res. Technol. 2022, 18, 384–395. [Google Scholar] [CrossRef]
- Lin, Z.; Song, K.; Yu, X. A Review on Wire and Arc Additive Manufacturing of Titanium Alloy. J. Manuf. Process. 2021, 70, 24–45. [Google Scholar] [CrossRef]
- Ermakova, A.; Razavi, N.; Berto, F.; Mehmanparast, A. Uniaxial and Multiaxial Fatigue Behaviour of Wire Arc Additively Manufactured ER70S-6 Low Carbon Steel Components. Int. J. Fatigue 2023, 166, 107283. [Google Scholar] [CrossRef]
- Rani, K.U.; Kumar, R.; Mahapatra, M.M.; Mulik, R.S.; Świerczyńska, A.; Fydrych, D.; Pandey, C. Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses. Materials 2022, 15, 7094. [Google Scholar] [CrossRef]
- Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive Manufacturing of Steels: A Review of Achievements and Challenges. J. Mater. Sci. 2021, 56, 64–107. [Google Scholar] [CrossRef]
- Caballero, A.; Ding, J.; Ganguly, S.; Williams, S. Wire + Arc Additive Manufacture of 17-4 PH Stainless Steel: Effect of Different Processing Conditions on Microstructure, Hardness, and Tensile Strength. J. Mater. Process. Technol. 2019, 268, 54–62. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, L.; Li, H.; Li, C.; Huang, K.; Lu, B. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process. Materials 2018, 11, 812. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Y.; Gao, M.; Zeng, X. Wire Arc Additive Manufacturing of Al-6Mg Alloy Using Variable Polarity Cold Metal Transfer Arc as Power Source. Mater. Sci. Eng. A 2018, 711, 415–423. [Google Scholar] [CrossRef]
- Panchenko, O.V.; Zhabrev, L.A.; Kurushkin, D.V.; Popovich, A.A. Macrostructure and Mechanical Properties of Al–Si, Al–Mg–Si, and Al–Mg–Mn Aluminum Alloys Produced by Electric Arc Additive Growth. Met. Sci. Heat Treat. 2019, 60, 749–754. [Google Scholar] [CrossRef]
- Semenchuk, V.M.; Chumaevskii, A.V.; Nepomnyaschiy, A.S.; Zykova, A.P.; Nikolaeva, A.V.; Rubtsov, V.E. Influence of 3D Printing Parameters of Aluminum–Manganese Bronze by Wire-Arc Additive Manufacturing on the Microstructure and Mechanical Properties. Russ. Phys. J. 2023, 65, 1577–1583. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; van Duin, S.; Li, H.; Shen, C. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing. Materials 2016, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chen, X.; Konovalov, S.; Su, C.; Siddiquee, A.N.; Gangil, N. In-Situ Wire-Feed Additive Manufacturing of Cu-Al Alloy by Addition of Silicon. Appl. Surf. Sci. 2019, 487, 1366–1375. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L. Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges. Eng. Struct. 2019, 180, 332–348. [Google Scholar] [CrossRef]
- Osipovich, K.; Kalashnikov, K.; Chumaevskii, A.; Gurianov, D.; Kalashnikova, T.; Vorontsov, A.; Zykova, A.; Utyaganova, V.; Panfilov, A.; Nikolaeva, A.; et al. Wire-Feed Electron Beam Additive Manufacturing: A Review. Metals 2023, 13, 279. [Google Scholar] [CrossRef]
- Artaza, T.; Suárez, A.; Murua, M.; García, J.C.; Tabernero, I.; Lamikiz, A. Wire Arc Additive Manufacturing of Mn4Ni2CrMo Steel: Comparison of Mechanical and Metallographic Properties of PAW and GMAW. Procedia Manuf. 2019, 41, 1071–1078. [Google Scholar] [CrossRef]
- Vora, J.; Parmar, H.; Chaudhari, R.; Khanna, S.; Doshi, M.; Patel, V. Experimental Investigations on Mechanical Properties of Multi-Layered Structure Fabricated by GMAW-Based WAAM of SS316L. J. Mater. Res. Technol. 2022, 20, 2748–2757. [Google Scholar] [CrossRef]
- Waqas, A.; Xiansheng, Q.; Jiangtao, X.; Chaoran, Y.; Fan, L. Impact Toughness of Components Made by GMAW Based Additive Manufacturing. Procedia Struct. Integr. 2018, 13, 2065–2070. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Wang, Z.; Ye, J.; Zhao, W. Mechanical Properties, Microstructural Characteristics and Heat Treatment Effects of WAAM Stainless-Steel Plate Material. J. Build. Eng. 2023, 75, 106988. [Google Scholar] [CrossRef]
- Dinovitzer, M.; Chen, X.; Laliberte, J.; Huang, X.; Frei, H. Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure. Addit. Manuf. 2019, 26, 138–146. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Y.; Li, R.; Yin, Z. Influences of Process Parameters on Surface Roughness of Multi-Layer Single-Pass Thin-Walled Parts in GMAW-Based Additive Manufacturing. J. Mater. Process. Technol. 2018, 252, 128–136. [Google Scholar] [CrossRef]
- Tawfik, M.M.; Nemat-Alla, M.M.; Dewidar, M.M. Effect of Travel Speed on the Properties of Al-Mg Aluminum Alloy Fabricated by Wire Arc Additive Manufacturing. J. Mater. Eng. Perform. 2021, 30, 7762–7769. [Google Scholar] [CrossRef]
- Dymnich, E.; Romanova, V.A.; Balokhonov, R.R.; Zinovieva, O.S.; Zinoviev, A.V. A Numerical Study of the Stress-Strain Behavior of Additively Manufactured Aluminum-Silicon Alloy at the Scale of Dendritic Structure. Phys. Mesomech. 2021, 24, 32–39. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; He, H.; Zhang, F.; Zhang, Y. Arc Welding-Laser Shock Forging Process for Improving the Mechanical Properties of the Fe-Cr-C Cladded Layer. Adv. Mater. Sci. Eng. 2021, 2021, 5233513. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Nagasai, B.P.; Malarvizhi, S.; Balasubramanian, V. Effect of Welding Processes on Mechanical and Metallurgical Characteristics of Carbon Steel Cylindrical Components Made by Wire Arc Additive Manufacturing (WAAM) Technique. CIRP J. Manuf. Sci. Technol. 2022, 36, 100–116. [Google Scholar] [CrossRef]
- Ermakova, A.; Mehmanparast, A.; Ganguly, S.; Razavi, J.; Berto, F. Investigation of Mechanical and Fracture Properties of Wire and Arc Additively Manufactured Low Carbon Steel Components. Theor. Appl. Fract. Mech. 2020, 109, 102685. [Google Scholar] [CrossRef]
- Posch, G.; Chladil, K.; Chladil, H. Material Properties of CMT—Metal Additive Manufactured Duplex Stainless Steel Blade-like Geometries. Weld. World 2017, 61, 873–882. [Google Scholar] [CrossRef]
- Fang, Q.; Zhao, L.; Chen, C.X.; Cao, Y.; Song, L.; Peng, Y.; Yin, F.X. 800 MPa Class HSLA Steel Block Part Fabricated by WAAM for Building Applications: Tensile Properties at Ambient and Elevated (600 °C) Temperature. Adv. Mater. Sci. Eng. 2022, 2022, 3014060. [Google Scholar] [CrossRef]
- Lin, Z.; Goulas, C.; Ya, W.; Hermans, M.J.M. Microstructure and Mechanical Properties of Medium Carbon Steel Deposits Obtained via Wire and Arc Additive Manufacturing Using Metal-Cored Wire. Metals 2019, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Shirizly, A.; Dolev, O. From Wire to Seamless Flow-Formed Tube: Leveraging the Combination of Wire Arc Additive Manufacturing and Metal Forming. JOM 2019, 71, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Le, V.T.; Bui, M.C.; Nguyen, T.D.; Nguyen, V.A.; Nguyen, V.C. On the Connection of the Heat Input to the Forming Quality in Wire-and-Arc Additive Manufacturing of Stainless Steels. Vacuum 2023, 209, 111807. [Google Scholar] [CrossRef]
- Nagasai, B.P.; Malarvizhi, S.; Balasubramanian, V. Mechanical Properties and Microstructural Characteristics of Wire Arc Additive Manufactured 308 L Stainless Steel Cylindrical Components Made by Gas Metal Arc and Cold Metal Transfer Arc Welding Processes. J. Mater. Process. Technol. 2022, 307, 117655. [Google Scholar] [CrossRef]
- Henckell, P.; Gierth, M.; Ali, Y.; Reimann, J.; Bergmann, J.P. Reduction of Energy Input in Wire Arc Additive Manufacturing (WAAM) with Gas Metal Arc Welding (GMAW). Materials 2020, 13, 2491. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, S.; Hu, R.; Liu, C.; Chen, F. Microstructure and Properties of a 2.25Cr1Mo0.25V Heat-Resistant Steel Produced by Wire Arc Additive Manufacturing. Adv. Mater. Sci. Eng. 2020, 2020, 8470738. [Google Scholar] [CrossRef] [Green Version]
- Tankova, T.; Andrade, D.; Branco, R.; Zhu, C.; Rodrigues, D.; Simões da Silva, L. Characterization of Robotized CMT-WAAM Carbon Steel. J. Constr. Steel Res. 2022, 199, 107624. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, X.; Wang, J.; Lu, X. Differences between Tensile Properties of WAAM SS304 Components in Different Directions. Steel Res. Int. 2023. [Google Scholar] [CrossRef]
- Karpagaraj, A.; Baskaran, S.; Arunnellaiappan, T.; Kumar, N.R. A Review on the Suitability of Wire Arc Additive Manufacturing (WAAM) for Stainless Steel 316. AIP Conf. Proc. 2020, 2247, 050001. [Google Scholar]
- Kolubaev, A.V.; Tarasov, S.Y.; Filippov, A.V.; Denisova, Y.A.; Kolubaev, E.A.; Potekaev, A.I. The Features of Structure Formation in Chromium-Nickel Steel Manufactured by a Wire-Feed Electron Beam Additive Process. Russ. Phys. J. 2018, 61, 1491–1498. [Google Scholar] [CrossRef]
- Vishnukumar, M.; Muthupandi, V.; Jerome, S. Effect of Post-Heat Treatment on the Mechanical and Corrosion Behaviour of SS316L Fabricated by Wire Arc Additive Manufacturing. Mater. Lett. 2022, 307, 131015. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Cipriano Farias, F.W.; Zhang, K.; Shamsolhodaei, A.; Shen, J.; Zhou, N.; Schell, N.; Capek, J.; Polatidis, E.; Santos, T.G.; et al. Wire and Arc Additive Manufacturing of 316L Stainless Steel/Inconel 625 Functionally Graded Material: Development and Characterization. J. Mater. Res. Technol. 2022, 21, 237–251. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Rohwerder, M.; Godec, M.; Podgornik, B. Complex Interdependency of Microstructure, Mechanical Properties, Fatigue Resistance, and Residual Stress of Austenitic Stainless Steels AISI 304L. Materials 2023, 16, 2638. [Google Scholar] [CrossRef]
- Puchi-Cabrera, E.S.; Saya-Gamboa, R.A.; La Barbera-Sosa, J.G.; Staia, M.H.; Ignoto-Cardinale, V.; Berríos-Ortiz, J.A.; Mesmacque, G. Fatigue Life of AISI 316L Stainless Steel Welded Joints, Obtained by GMAW. Weld. Int. 2009, 23, 778–788. [Google Scholar] [CrossRef]
- Abe, F. Precipitate Design for Creep Strengthening of 9% Cr Tempered Martensitic Steel for Ultra-Supercritical Power Plants. Sci. Technol. Adv. Mater. 2008, 9, 013002. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Sarosi, P.M.; Schneibel, J.H.; Mills, M.J. Creep Response and Deformation Processes in Nanocluster-Strengthened Ferritic Steels. Acta Mater. 2008, 56, 1407–1416. [Google Scholar] [CrossRef]
- Martin, J.W. Micromechanisms in Particle-Hardened Alloys; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- ESAB. Consumables Catalog; ESAB: North Bethesda, MD, USA, 2019. [Google Scholar]
- Farber, V.M.; Morozova, A.N.; Vichuzhanin, D.I.; Karabanalov, M.S. Structure of Chernov–Luders Band in Normalized Steel 09G2S. Part 1. Bands of Localized Strain. Met. Sci. Heat Treat. 2022, 64, 357–362. [Google Scholar] [CrossRef]
Material | C | Si | V | Cr | Mn | Fe | Ni | Cu | Mo | P/S/N |
---|---|---|---|---|---|---|---|---|---|---|
12Cr1MoV (GOST 5520-79) | 0.12 | 0.23 | 0.169 | 0.98 | 0.47 | bal. | 0.18 | – | 0.261 | <0.014 |
OK Autrod 13.14 (GOST 2246-70) | 0.06–0.1 | 0.45–0.7 | 0.2–0.35 | 0.95–1.25 | 1.2–1.5 | bal. | <0.3 | – | 0.5–0.7 | <0.025 |
Parameters | GMAW | coldArc |
---|---|---|
Current intensity, A | 135 | 128 |
Voltage, V | 16.4 | 15.8 |
Wire feed rate, mm/min | 3500 | 3500 |
Torch travel velocity, mm/min | 250 | 250 |
Gas feed rate, l/min | 15 | 15 |
Dwell time between layer deposition, sec | 40 | 40 |
Heat input (HI), kJ/mm | 0.425 | 0.388 |
Wall thickness, mm | 8 ± 1 | 7 ± 1 |
Wall height, mm | 53 | 58 |
Material | Yield Point (0.2), MPa | Ultimate Tensile Strength, MPa | Strain at Break, % | Fracture Location from the Fillet, mm | Distance between Localization Peaks, mm |
---|---|---|---|---|---|
Russian GOST 5520-79 for 12Cr1MoV | 295 | 440–640 | 21 | - | - |
Russian GOST 2246-70 for “OK Autrod 13.14” | 600 | 700 | 16 | - | - |
12Cr1MoV substrate | 364 ± 19 | 384 ± 21 | 17.8 ± 1.7 | 2.1 | no peaks |
OK Autrod 13.14 in GMAW mode | 324 ± 18 | 647 ± 39 | 9.3 ± 1.1 | 7 | 4.3 |
OK Autrod 13.14 in coldArc mode | 460 ± 23 | 681 ± 34 | 5.7 ± 0.8 | 7.2 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasov, I.V.; Gordienko, A.I.; Eremin, A.V.; Semenchuk, V.M.; Kuznetsova, A.E. Structure and Mechanical Behavior of Heat-Resistant Steel Manufactured by Multilayer Arc Deposition. Metals 2023, 13, 1375. https://doi.org/10.3390/met13081375
Vlasov IV, Gordienko AI, Eremin AV, Semenchuk VM, Kuznetsova AE. Structure and Mechanical Behavior of Heat-Resistant Steel Manufactured by Multilayer Arc Deposition. Metals. 2023; 13(8):1375. https://doi.org/10.3390/met13081375
Chicago/Turabian StyleVlasov, Ilya V., Antonina I. Gordienko, Aleksandr V. Eremin, Vyacheslav M. Semenchuk, and Anastasia E. Kuznetsova. 2023. "Structure and Mechanical Behavior of Heat-Resistant Steel Manufactured by Multilayer Arc Deposition" Metals 13, no. 8: 1375. https://doi.org/10.3390/met13081375
APA StyleVlasov, I. V., Gordienko, A. I., Eremin, A. V., Semenchuk, V. M., & Kuznetsova, A. E. (2023). Structure and Mechanical Behavior of Heat-Resistant Steel Manufactured by Multilayer Arc Deposition. Metals, 13(8), 1375. https://doi.org/10.3390/met13081375