Improving the Corrosion Resistance of AZ91 Magnesium Alloy by Surface Coating TiO2 Layers
Abstract
:1. Introduction
2. Experiments and Methods
3. Results and Discussion
3.1. Microstructure of TiO2-Coated AZ91 Magnesium Alloy
3.2. Corrosion Resistance of TiO2-Coated AZ91 Magnesium Alloy Surface
4. Conclusions
- (1)
- The XRD results demonstrate that TiO2 prepared via the sol-gel method is attached to the surface of AZ91 magnesium alloys after being held at 300 °C for 2 h. SEM analysis reveals that the number of cracks increases after one coating is applied. After three coatings, larger cracks appear or even peel off due to poor adhesion. After five coatings, many stacks appear, and the cracks markedly decrease. Notably, a relatively uniform and stable TiO2 coating can be formed.
- (2)
- The hydrogen evolution rates for sample 2 and sample 3 were the slowest and somewhat similar for the 3.5% NaCl solution. However, the final coating of sample 3 was less than that of sample 2, and the total hydrogen evolution of the five layers was the least.
- (3)
- The corrosion potential of the AZ91 magnesium alloy coated with one, three and five layers of TiO2 increased by 100 mV, 330 mV and 340 mV, respectively, compared to the base, and the corrosion current density decreased by 55.4%, 89.8% and 91.7%, respectively. The AZ91 substrate has an impedance modulus of 41.75 Ω, whereas those coated with one, three and five layers have impedance moduli of 53.73 Ω, 158.30 Ω and 162.90 Ω, respectively. The impedance modulus, corrosion potential and corrosion current density reveal that the samples coated with five layers have the best corrosion resistance.
- (4)
- A comprehensive analysis of the hydrogen evolution corrosion rate, total hydrogen evolution, impedance modulus, corrosion potential and corrosion current density of the AZ91 magnesium alloy coated with one, three and five layers of TiO2 coating reveals that five TiO2 coatings can significantly improve the corrosion resistance of the AZ91 magnesium alloy surface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xi, B.; Fang, G.; Xu, S. Multiscale mechanical behavior and micro structure evolution of extruded magnesium alloy sheets: Experimental and crystal plasticity analysis. Mater. Charact. 2018, 135, 115–123. [Google Scholar] [CrossRef]
- Jia, C.Y.; Huo, Y.M.; He, T.; Yang, W.B.; Huo, C.L.; Liu, K.R. Current status of research on the development of magnesium alloy from process to application. Agric. Equip. Veh. Eng. 2022, 60, 61–65. [Google Scholar]
- Liu, J.A.; Xu, H. The application of magnesium alloy materials and the development of their processing technology. Light Alloy Process. Technol. 2007, 35, 1–5+54. [Google Scholar]
- Upadhyay, G.; Saxena, K.K.; Sehgal, S.; Mohammed, K.A.; Prakash, C.; Dixit, S.; Buddhi, D. Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties. Metals 2022, 12, 1392. [Google Scholar] [CrossRef]
- Neeraj, S.; Gurpreet, S.; Pardeep, S.; Singla, A. Development of Mg-Alloy by Powder Metallurgy Method and Its Characterization. Powder Metall. Met. Ceram. 2019, 58, 163–169. [Google Scholar]
- Huang, Y.D.; Jiang, B. Editorial for special issue on developments of magnesium alloys for structural and functional applications. Int. J. Miner. Metall. Mater. 2022, 29, 1307–1309. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- de Oliveira, M.C.L.; Antunes, R.A. Graphene-based coatings for magnesium alloys: Exploring the correlation between coating architecture, deposition methods, corrosion resistance and materials selection. Corros. Rev. 2022, 40, 427–451. [Google Scholar] [CrossRef]
- Cui, X.L.; Jiang, Z.Y. Preparation of nano TiO2 films. Adv. Chem. 2002, 14, 325–331. [Google Scholar]
- Daubert, J.S.; Hill, G.T.; Gotsch, H.N.; Gremaud, A.P.; Ovental, J.S.; Williams, P.S.; Oldham, C.J.; Parsons, G.N. Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2017, 94, 4192–4201. [Google Scholar] [CrossRef]
- Lee, M.; Han, S.; Kim, C.; Velumani, S.; Han, A.; Kassiba, A.H.; Castaneda, H. ZrO2/ZnO/TiO2 Nanocomposite Coatings on Stainless Steel for Improved Corrosion Resistance, Biocompatibility, and Antimicrobial Activity. ACS Appl. Mater. Interfaces 2022, 14, 13801–13811. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, H.Y.; Liu, L.L. Preparation of TiO2 coating on AZ91D magnesium alloy surface by sol-gel method and its corrosion performance. Therm. Process. Technol. 2012, 41, 123–124+127. [Google Scholar]
- Ramezani, M.; Ripin, Z.M.; Pasang, T.; Jiang, C.-P. Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals 2023, 13, 1299. [Google Scholar] [CrossRef]
- Huang, Z.F.; Yong, Q.W.; Xie, Z.H. Stearic acid modified porous nickel-based coating on magnesium alloy AZ31 for high superhydrophobicity and corrosion resistance. Corros. Commun. 2023, 10, 38–47. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Lv, Y.; Dong, Z.; Hashimoto, T.; Zhou, X. Enhanced corrosion resistance of AZ31 Mg alloy by one-step formation of PEO/Mg-Al LDH composite coating. Corros. Commun. 2022, 6, 67–83. [Google Scholar] [CrossRef]
- Wan, D.; Wang, Y.; Dong, S.; Xue, Y.; Han, G.; Yang, F.; Tang, H.; Kang, J.; Zeng, G.; Xu, J. Improving corrosion resistance of high strength Mg-Zn-Y alloy through Ca addition. Corros. Eng. Sci. Technol. 2022, 57, 789–795. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.L.; Meng, X.; Cao, G.Q.; Li, C.S. Corrosion Protection of Mg Alloy by a TiO2 Coating Prepared by Sol-Gel Method. Adv. Mater. Res. 2013, 740, 473–477. [Google Scholar] [CrossRef]
- Shen, G.X.; Chen, Y.; Lin, L.; Lin, C.; Scantlebury, D. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochim. Acta 2005, 50, 5083–5089. [Google Scholar] [CrossRef]
- Pour, F.H.; Behpour, M.; Shabani-Nooshabadi, M.; Jafari, Y. Investigation of corrosion protection properties of TiO2-CdO nanocomposite coating prepared by sol-gel method on copper. J. Nanostruct. 2020, 10, 52–63. [Google Scholar]
- Zhao, Y.-C.; Zhao, M.-C.; Xu, R.; Liu, L.; Tao, J.-X.; Gao, C.; Shuai, C.; Atrens, A. Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy. J. Alloys Compd. 2019, 770, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Okouchi, H.; Seki, Y.; Sekigawa, T.; Hira, H.; Kawamura, Y. Nanocrystalline LPSO Mg-Zn-Y-Al Alloys with High Mechanical Strength and Corrosion Resistance. Mater. Sci. Forum 2010, 638–642, 1476–1481. [Google Scholar] [CrossRef]
- Kavimani, V.; Prakash, K.S.; Gunashri, R.; Sathish, P. Corrosion protection behaviour of r-GO/TiO2 hybrid composite coating on Magnesium substrate in 3.5 wt.% NaCl. Prog. Org. Coat. 2018, 125, 358–364. [Google Scholar] [CrossRef]
- Cheng, P.; Zhao, Y.H.; Lu, R.P.; Hou, H. Effect of the morphology of long-period stacking ordered phase on mechanical properties and corrosion behavior of cast Mg-Zn-Y-Ti alloy. J. Alloys Compd. 2018, 764, 226–238. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Liu, Z.; Peng, W.-X.; Yoysefi, N. Amino acid and TiO2 nanoparticles mixture inserted into sol-gel coatings: An efficient corrosion protection system for AZ91 magnesium alloy. Prog. Org. Coat. 2019, 136, 105296. [Google Scholar] [CrossRef]
- Jin, K.; Zhang, Y.Q.; Zhang, T.; Guo, J. Electrochemical corrosion behavior of laser-fused Al-Ti-Ni/C coating on AZ91D magnesium alloy surface. Electr. Weld. Mach. 2019, 49, 83–87. [Google Scholar]
- Liu, P.; Wang, J.M.; Yu, X.T.; Chen, X.-B.; Li, S.-Q.; Chen, D.-C.; Guan, S.-K.; Zeng, R.-C.; Cui, L.-Y. Corrosion resistance of bioinspired DNA-induced Ca–P coating on biodegradable magnesium alloy. J. Magnes. Alloys 2019, 7, 144–154. [Google Scholar] [CrossRef]
- Wang, X.R. Preparation and Performance Study of Superhydrophobic Coatings on Titanium Alloy; Huazhong University of Science and Technology: Wuhan, China, 2019. [Google Scholar]
- Wang, D.; Zhang, J.; Xu, J.; Zhao, Z.; Cheng, W.; Xu, C. Microstructure and corrosion behavior of Mg–Zn–Y–Al alloys with long-period stacking ordered structures. J. Magnes. Alloys 2014, 2, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Rivero, P.J.; Maeztu, J.D.; Berlanga, C.; Miguel, A.; Palacio, J.F.; Rodriguez, R. Hydrophobic and Corrosion Behavior of Sol-Gel Hybrid Coatings Based on the Combination of TiO2 NPs and Fluorinated Chains for Aluminum Alloys Protection. Metals 2018, 8, 1076. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P. Research on Composite Coatings Prepared by Chemical Transformation and Sol-Gel Technology on the Surface of AZ91D Magnesium Alloy; Harbin Engineering University: Harbin, China, 2008. [Google Scholar]
- Wang, S.X.; Ma, X.H.; Bai, J.T.; Du, T.; Ma, R.; Du, A.; Zhao, X.; Fan, Y.; Li, G. Study of the corrosion behavior and mechanism of a hot-dipping Zn–6Al–3Mg alloy coating in 3.5 wt% neutral NaCl solution. Surf. Coat. Technol. 2023, 464, 129576. [Google Scholar] [CrossRef]
- Shao, J.; Wang, X.-T.; Xu, H.; Zhao, X.-D.; Niu, J.-M.; Zhang, Z.-D.; Huang, Y.-L.; Duan, J.-Z. Photoelectrochemical Performance of SnS2 Sensitized TiO2 Nanotube for Protection of 304 Stainless Steel. J. Electrochem. Soc. 2021, 168, 016511. [Google Scholar] [CrossRef]
- Yu, X.Y.; Cheng, J.J.; Du, Y.J. Titanium dioxide photocatalytic materials. Chem. World 2000, 11, 567–570. [Google Scholar]
- Fan, C.Z.; Xiao, J.P.; Ding, Y.W. Progress in the preparation and photocatalytic reaction of TiO2 nanoparticles. Sci. Bull. 2001, 46, 265–273. [Google Scholar]
- Ohko, Y.; Saitoh, S.; Tatsuma, T.; Fujishima, A. Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel. J. Electrochem. Soc. 2001, 148, B24–B28. [Google Scholar] [CrossRef]
- Lu, G.; Sun, M.; Chen, Z.; Jiang, X.; Jing, J. Efficient TiO2/AgInS2/ZnS Nanoarchitecture Photoelectrode for the Photoelectrochemical Cathodic Protection of Copper in NaCl Solution. J. Electrochem. Soc. 2020, 167, 141505. [Google Scholar] [CrossRef]
- Sinulingga, K.; Sirait, M.; Marpaung, T.M. Effect of Temperature Variation Characteristics Of Crystal Structure and Morphology of Nano TiO2 Coating On Metal Anti-Corrosion Coating by Sol-Gel Method Spin Coating. J. Phys. Conf. Ser. 2020, 1485. [Google Scholar] [CrossRef]
Specimen Designation | Coating Numbers | Parameter of Heat Treatment | ||||
---|---|---|---|---|---|---|
Drying Temperature (°C) | Drying Time (h) | Drying Times (h) | Holding Temperature (°C) | Holding Time (h) | ||
AZ91 matrix | - | - | - | - | - | - |
Sample 1 | 1 | - | - | - | 300 | 2 |
Sample 2 | 3 | 100 | 0.5 | 2 | 300 | 2 |
Sample 3 | 5 | 100 | 0.5 | 4 | 300 | 2 |
Parameters | Ecorr/V | icorr/A∙cm−2 | |
---|---|---|---|
Test Samples | |||
AZ91 matrix | −1.74 | 8.3 × 10−3 | |
Sample 1 | −1.64 | 3.7 × 10−3 | |
Sample 2 | −1.41 | 8.5 × 10−4 | |
Sample 3 | −1.40 | 6.9 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, D.; Tang, H.; Sun, Y.; Zeng, G.; Dong, S.; Han, G.; Wang, Y.; Yang, F.; Wang, Y. Improving the Corrosion Resistance of AZ91 Magnesium Alloy by Surface Coating TiO2 Layers. Metals 2023, 13, 1400. https://doi.org/10.3390/met13081400
Wan D, Tang H, Sun Y, Zeng G, Dong S, Han G, Wang Y, Yang F, Wang Y. Improving the Corrosion Resistance of AZ91 Magnesium Alloy by Surface Coating TiO2 Layers. Metals. 2023; 13(8):1400. https://doi.org/10.3390/met13081400
Chicago/Turabian StyleWan, Diqing, Hao Tang, Yumeng Sun, Guilin Zeng, Shaoyun Dong, Guoliang Han, Yu Wang, Fan Yang, and Yongyong Wang. 2023. "Improving the Corrosion Resistance of AZ91 Magnesium Alloy by Surface Coating TiO2 Layers" Metals 13, no. 8: 1400. https://doi.org/10.3390/met13081400
APA StyleWan, D., Tang, H., Sun, Y., Zeng, G., Dong, S., Han, G., Wang, Y., Yang, F., & Wang, Y. (2023). Improving the Corrosion Resistance of AZ91 Magnesium Alloy by Surface Coating TiO2 Layers. Metals, 13(8), 1400. https://doi.org/10.3390/met13081400