Effect of Rubidium on Solidification Parameters, Structure and Operational Characteristics of Eutectic Al-Si Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Modification Technology
2.2. Methods of Studying the Microstructure and Mechanical Properties
2.3. Methods of Chemical and Thermal Analysis
2.4. Porosity Investigation Method
3. Results
3.1. Thermodynamic Analysis of the Interaction of Rubidium Nitrate with Melt
3.2. Mechanical Properties
3.3. Microstructural Studies
3.4. Thermal Analysis
3.5. Study of the Effect of Rubidium on the Porosity of the Alloy
3.6. Evaluation of the Duration of the Modifying Effect of Rubidium in the Melt
4. Discussion
5. Conclusions
- The results of the studies conducted showed that the use of rubidium as a modifier is an interesting direction for improving the structure of cast aluminum alloys and improving their mechanical properties. The most stable and highest level of mechanical properties was obtained via modification with rubidium using an actual content in the range of 0.007–0.01%.
- Microstructural studies showed that rubidium effectively refined eutectic silicon and changed its morphology but had little effect on α-Al (SDAS) dendrites. Energy-dispersive X-ray spectral microanalysis and elementary mapping showed the presence of impurity rubidium atoms in modified silicon crystals.
- Thermal analysis showed that modification with rubidium changed the solidification parameters of the 12wt%Si alloy, causing an extension of the solidification range. The solidus temperature decreased by 18.2 °C. Rubidium contributed to a significant decrease in the temperature of the beginning of the solidification of the eutectic by 7.6 °C.
- When the 12wt%Si alloy was treated with RbNO3 salt, the melt was degassed and the gas porosity decreased. Modification with rubidium allowed the duration of the modifying effect to be maintained in the melt for up to 180 min.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belov, N.A. Phase Composition of Industrial and Promising Aluminium Alloys: Monograph; MISiS Publishing House: Moscow, Russia, 2010; 511p. [Google Scholar]
- Petrov, I.A.; Shlyaptseva, A.D. Effect of REE on the solidification of eutectic silumin. Russ. Metall. Met. 2022, 3, 204–210. [Google Scholar] [CrossRef]
- Fredriksson, H.; Hillert, M.; Lange, N. The modification of aluminium-silicon alloys by sodium. J. Inst. Met. 1973, 101, 285–299. [Google Scholar]
- Flood, S.C.; Hunt, J.D. Modification of Al-Si eutectic alloys with Na. Met. Sci. 1981, 15, 287–294. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Li, Q.C.; Liu, Q.F. Modification of aluminum-silicon alloys with sodium. Acta Metall. Mater. 1991, 39, 2497–2502. [Google Scholar]
- Hegde, S.; Prabhu, K.N. Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 2008, 43, 3009–3027. [Google Scholar] [CrossRef]
- Moniri, S.; Shahani, A.J. Chemical modification of degenerate eutectics: A review of recent advances and current issues. J. Mater. Res. 2019, 34, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Ashtari, P.; Tezuka, H.; Sato, T. Modification of Fe-containing intermetallic compounds by K addition to Fe-rich AA319 aluminum alloys. Scr. Mater. 2005, 53, 937–942. [Google Scholar] [CrossRef]
- Jenkinson, D.C.; Hogan, L.M. The modification of aluminium-silicon alloys with strontium. J. Cryst. Growth 1975, 28, 171–187. [Google Scholar] [CrossRef]
- Dahle, A.K.; Nogita, K.; McDonald, S.D.; Dinnis, C.; Lu, L. Eutectic modification and microstructure development in Al-Si Alloys. Mater. Sci. Eng. A 2005, 413–414, 243–248. [Google Scholar] [CrossRef]
- Fracchia, E.; Gobber, F.S.; Rosso, M. Effect of Alloying Elements on the Sr Modification of Al-Si Cast Alloys. Metals 2021, 11, 342. [Google Scholar] [CrossRef]
- Knuutinen, A.; Nogita, K.; McDonald, S.D.; Dahle, A.K. Modification of Al-Si alloys with Ba, Ca, Y and Yb. J. Light Met. 2001, 1, 229–240. [Google Scholar] [CrossRef]
- Rao, J.; Zhang, J.; Liu, R.; Zheng, J.; Yin, D. Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition. Mater. Sci. Eng. A 2018, 728, 72–79. [Google Scholar] [CrossRef]
- Shlyaptseva, A.D.; Petrov, I.A.; Ryakhovsky, A.P.; Medvedeva, E.V.; Tcherdyntsev, V.V. Complex structure modification and improvement of properties of aluminium casting alloys with various silicon content. Metals 2021, 11, 1946. [Google Scholar] [CrossRef]
- Sreeja Kumari, S.S.; Pillai, R.M.; Pai, B.C. Structure and properties of calcium and strontium treated Al–7Si–0.3Mg alloy: A comparison. J. Alloys Compd. 2008, 460, 472–477. [Google Scholar]
- Abdollahi, A.; Gruzleski, J.E. An evaluation of calcium as a eutectic modifier in A357 alloy. Int. J. Cast Met. Res. 1998, 11, 145–155. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Jie, J.; Wei, Z. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Mater. Des. 2011, 32, 1617–1622. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Chou, C.Y.; Lee, S.L.; Lin, C.K.; Lin, J.C.; Lim, S.W. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys. J. Alloys Compd. 2009, 487, 157–162. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Lee, S.L.; Lin, C.K. Effect of trace Ce addition on the microstructures and mechanical properties of A356 (AL-7SI-0.35Mg) aluminum alloys. J. Chin. Inst. Eng. 2011, 34, 609–616. [Google Scholar] [CrossRef]
- Qiu, H.; Yan, H.; Hu, Z. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys. J. Alloys Compd. 2013, 567, 77–81. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, X.D.; Ludwig, T.H.; Tsunekawa, Y.; Arnberg, L.; Jiang, J.Z.; Schumacher, P. Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. 2015, 84, 153–163. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, Z.; Li, H.; Lin, Y.; Li, N.; Gong, T.; Zhang, R.; Liu, H. Effects of Holmium Additions on Microstructure and Properties of A356 Aluminum Alloys. Metals 2018, 8, 849. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.M.; Wang, Q.; Zhao, G.; Zhang, R.Y. Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys. Mater. Sci. Eng. A 2015, 626, 102–107. [Google Scholar] [CrossRef]
- Nogita, K.; McDonald, S.D.; Dahle, A.K. Eutectic modification of Al-Si alloys with rare earth metals. Mater. Trans. 2004, 45, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Suetsugu, S.; Tsunekawa, Y.; Schumacher, P. Refinement of eutectic Si phase in Al-5Si alloys with Yb additions. Metall. Mater. Trans. A 2012, 44, 669–681. [Google Scholar] [CrossRef]
- Edwards, J.D.; Archer, R.S. The new aluminum-silicon alloys—An important process of “modification” and the remarkable improvement in properties it brings about. Chem. Metall. Eng. 1924, 31, 504–508. [Google Scholar]
- Day, M.G.; Hellawell, A. The microstructure and crystallography of aluminium silicon eutectic alloys. Proc. Royal Soc. A Math. Phys. Eng. Sci. 1968, 305, 473–491. [Google Scholar]
- Lu, S.; Hellawell, A. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metall. Trans. A. 1987, 18, 1721–1733. [Google Scholar]
- Haynes, W.M.; Lide, D.R. (Eds.) CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Gale, W.F.; Totemeier, T.C. (Eds.) Smithells Metals Reference Book, 8th ed.; Totemeier Imprint: Oxford, UK, 2003; p. 2080. [Google Scholar]
- Altman, M.B.; Stromskaya, N.P.; Guskova, N.V. Method of Simultaneous Refining and Modification of Silumins. Patent SU 423867 A1, 15 April 1974. [Google Scholar]
- Merkus, H.G. Particle Size Measurements: Fundamentals, Practice, Quality; Springer: Berlin/Heidelberg, Germany, 2009; 534p. [Google Scholar]
- ISO 10049:2019(E); Aluminium alloy castings—Visual method for assessing porosity. International Organization for Standardization: Geneva, Switzerland, 2019.
- Stern, K.H. high temperature properties and decomposition of inorganic salts part 3, nitrates and nitrites. J. Phys. Chem. Ref. Data 1972, 1, 747–772. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, V.L.; Veyts, I.V. Thermodynamic Properties of Individual Substances: A Handbook; Nauka: Moscow, Russia, 1978; Volume 4. [Google Scholar]
- Shin, S.S.; Kim, E.S.; Yeom, G.Y.; Lee, J.C. Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting. Mater. Sci. Eng. A 2012, 532, 151. [Google Scholar] [CrossRef]
- Hogan, L.M.; Song, H. Interparticle spacings and undercoolings in Al-Si eutectic microstructures. Met. Trans. A 1987, 18, 707–713. [Google Scholar] [CrossRef]
- Nogita, K.; Yasuda, H.; Yoshiya, M.; McDonald, S.D.; Uesugi, K.; Takeuchi, A.; Suzuki, Y. The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. J. Alloys. Compd. 2010, 489, 415–420. [Google Scholar] [CrossRef]
- Sigworth, G.K. Modification of Aluminum-Silicon Alloys, Casting. In ASM Handbook; Viswanathan, S., Apelian, D., Donahue, R.J., DasGupta, B., Gywn, M., Jorstad, J.L., Monroe, R.W., Sahoo, M., Prucha, T.E., Twarog, D., Eds.; ASM International: Detroit, MI, USA, 2008; pp. 240–254. [Google Scholar] [CrossRef]
- Ardo, D. Porosity in aluminum foundry alloys—The effect of modification. In Proceedings of the International Symposium on Reduction and Casting of Aluminum, Montreal, QC, Canada, 28–31 August 1988; Ardo, D., Gruzleski, J.E., Eds.; Pergamon Press: Oxford, UK, 1988; pp. 263–282. [Google Scholar]
- Andrushevich, A.A.; Sadokha, M.A. Shrinkage phenomena in silumins when treated with long-acting modifiers. Foundry Prod. Metall. 2022, 3, 30–35. [Google Scholar] [CrossRef]
- Nogita, K.; McDonald, S.D.; Zindel, J.W.; Dahle, A.K. Eutectic solidification mode in sodium modified Al-7 mass%Si-3.5 mass%Cu-0.2 mass%Mg casting alloys. Mater. Trans. 2001, 42, 1981–1986. [Google Scholar] [CrossRef] [Green Version]
- Knuutinen, A.; Nogita, K.; McDonald, S.S.; Dahle, A.K. Porosity formation in aluminium alloy A356 modified with Ba, Ca, Y and Yb. J. Light Met. 2001, 1, 241–249. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Z.; Li, J. Influence of Alloying Element Mg on Na and Sr Modifying Al-7Si Hypoeutectic Alloy. Materials 2022, 15, 1537. [Google Scholar] [CrossRef]
- Ganesh, M.S.; Reghunath, N.; Levin, M.J.; Prasad, A.; Doondi, S.; Shankar, K.V. Strontium in Al–Si–Mg Alloy: A Review. Met. Mater. Int. 2022, 28, 1–40. [Google Scholar] [CrossRef]
Al-12wt%Si Alloy | Estimated Quantities Rb % | Mass Fraction, % (Al-Base) | ||||||
---|---|---|---|---|---|---|---|---|
Si | Cu | Mn | Ti | Zn | Fe | Rb | ||
Unmodified | — | 11.42 | 0.0020 | 0.002 | 0.007 | 0.0097 | 0.22 | — |
Alloy 1 | 0.1 | 11.39 | 0.0017 | 0.0023 | 0.004 | 0.0090 | 0.22 | 0.002 |
Alloy 2 | 0.3 | 11.51 | 0.0013 | 0.002 | 0.006 | 0.01 | 0.26 | 0.0052 |
Alloy 3 | 0.5 | 11.36 | 0.0021 | 0.0026 | 0.006 | 0.0092 | 0.20 | 0.0075 |
Alloy 4 | 1.0 | 11.48 | 0.0018 | 0.0042 | 0.009 | 0.01 | 0.25 | 0.01 |
Al-12wt%Si Alloy | Features | |||
---|---|---|---|---|
σv, MPa | δ, % | lSi eut, µm | SDAS, µm | |
Unmodified | 145 ± 2 | 2.6 ± 0.2 | 42 ± 10 | |
Alloy 1 | 149 ± 2 | 4.1 ± 0.1 | 40± 9 | |
Alloy 2 | 166 ± 3 | 5.5 ± 0.4 | 37 ± 10 | |
Alloy 3 | 169 ± 1 | 9.3 ± 0.5 | 37 ± 9 | |
Alloy 4 | 171 ± 2 | 8.6 ± 0.5 | 39 ± 8 |
Al-12wt%Si, | Solidification Parameters, Temperature (°C) | |||
---|---|---|---|---|
Liquidus (tliq) | Solidus (tsol) | Solidification Range (Δt) | Beginning of Solidification of Eutectic (teu.sol.st) | |
Unmodified | 582.0 | 557.5 | 24.2 | 576.0 |
Alloy 1 | 581.0 | 551.0 | 30.0 | 571.9 |
Alloy 2 | 581.5 | 549.1 | 32.2 | 570.6 |
Alloy 3 | 581.8 | 539.3 | 42.5 | 568.4 |
Alloy 4 | 581.7 | 538.2 | 43.5 | 567.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, I.A.; Shlyaptseva, A.D.; Ryakhovsky, A.P.; Medvedeva, E.V.; Tcherdyntsev, V.V. Effect of Rubidium on Solidification Parameters, Structure and Operational Characteristics of Eutectic Al-Si Alloy. Metals 2023, 13, 1398. https://doi.org/10.3390/met13081398
Petrov IA, Shlyaptseva AD, Ryakhovsky AP, Medvedeva EV, Tcherdyntsev VV. Effect of Rubidium on Solidification Parameters, Structure and Operational Characteristics of Eutectic Al-Si Alloy. Metals. 2023; 13(8):1398. https://doi.org/10.3390/met13081398
Chicago/Turabian StylePetrov, Igor A., Anastasiya D. Shlyaptseva, Alexandr P. Ryakhovsky, Elena V. Medvedeva, and Victor V. Tcherdyntsev. 2023. "Effect of Rubidium on Solidification Parameters, Structure and Operational Characteristics of Eutectic Al-Si Alloy" Metals 13, no. 8: 1398. https://doi.org/10.3390/met13081398
APA StylePetrov, I. A., Shlyaptseva, A. D., Ryakhovsky, A. P., Medvedeva, E. V., & Tcherdyntsev, V. V. (2023). Effect of Rubidium on Solidification Parameters, Structure and Operational Characteristics of Eutectic Al-Si Alloy. Metals, 13(8), 1398. https://doi.org/10.3390/met13081398