Stress Intensity Factor Solutions for Eccentric Annular External Cracks in Notched Round Bars under Tensile Loading
Abstract
:1. Introduction
2. Numerical Procedure
3. Numerical Results
3.1. Stress Intensity Factors Solutions for Non-Eccentric Annular Cracks in Smooth Bars
3.2. Stress Intensity Factors Solutions for Eccentric Annular Cracks
4. Conclusions
- -
- The crack eccentricity with respect to the bar axis causes a difference in depth along the crack front and the bending of the bar, leading to a decrease in the dimensionless SIF value from the point of deepest crack depth (maximum SIF) to the point of shallowest crack depth (minimum SIF).
- -
- The maximum dimensionless SIF (associated with the maximum depth crack front point) and the difference between dimensionless SIFs along the crack front rise with decreasing relative ligament diameter, increasing relative ligament eccentricity, the presence of a notch in the bar, and the increase in the elliptical notch axial semi-axis.
- -
- The partial and full contact of the crack surface in the crack front zone of the shallowest crack depth is a constraint to the bar bending, reduces the dimensionless SIF values, and produces variations between the dimensionless SIF values of the smooth and notched bars due to contact differences caused by the bar geometries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
α | angle defining a crack front point |
b | elliptical notch radial semi-axis (notch depth) |
c | elliptical notch axial semi-axis |
c/b | elliptical notch semi-axes ratio |
d | ligament diameter |
d/D | relative ligament diameter |
D | outer diameter of the bar |
e | ligament eccentricity with respect to the bar axis |
e/D | relative ligament eccentricity |
E | Young’s modulus |
J | J-integral |
KI | SIF in mode I |
ν | Poisson’s ratio |
P | crack front point |
σ | tension stress applied to the bar ends |
Y | dimensionless SIF |
Ymax | maximum dimensionless SIF |
Ymin | minimum dimensionless SIF |
Abbreviations | |
CCRB | circumferentially cracked round bar |
CDT | critical distance theory |
CNRB | circumferentially notched round bar |
HAC | hydrogen-assisted cracking |
NSIF | notch stress intensity factor |
PDM | potential drop method |
PSM | peak stress method |
RSG | relative stress gradient |
SED | strain energy density |
SFI | stress field intensity |
SIF | stress intensity factor |
SVM | support vector machine |
References
- Campagnolo, A.; Bär, J.; Meneghetti, G. Analysis of crack geometry and location in notched bars by means of a three-probe potential drop technique. Int. J. Fatigue 2019, 124, 167–187. [Google Scholar] [CrossRef]
- Nikravesh, M.Y.; MeidanSharafi, M. Failure of a steam turbine rotor due to circumferential crack growth influenced by temperature and steady torsion. Eng. Fail. Anal. 2016, 66, 296–311. [Google Scholar] [CrossRef]
- Toribio, J.; González, B.; Matos, J.C.; Ayaso, F.J. Fatigue behaviour of bolted joints. Met. Mater. Int. 2012, 18, 553–558. [Google Scholar] [CrossRef]
- Macek, W.; Robak, G.; Żak, K.; Branco, R. Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens. Eng. Fail. Anal. 2022, 135, 106121. [Google Scholar] [CrossRef]
- Strzelecki, P.; Wachowski, M. Effect of the stress concentration factor on the final fracture zone of aluminium AW 6063 T6 for rotating bending specimens. Mater. Today Commun. 2022, 31, 103766. [Google Scholar] [CrossRef]
- Brilz, M.; Hoche, H.; Oechsner, M. Hydrogen-assisted cracking (HAC) of high-strength steels as a function of the hydrogen pre-charging time. Eng. Fract. Mech. 2022, 261, 108246. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.-P.; Correia, J.A.F.O.; de Jesus, A.M.P.; Berto, F. Recent advances on notch effects in metal fatigue: A review. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 637–659. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Zhu, S.-P.; He, J.-C.; Liao, D.; Wang, Q. Assessment of notch fatigue and size effect using stress field intensity approach. Int. J. Fatigue 2021, 149, 106279. [Google Scholar] [CrossRef]
- Ye, W.-L.; Zhu, S.-P.; Niu, X.; He, J.-C.; Correia, J.A.F.O. Fatigue life prediction of notched components under size effect using critical distance theory. Theor. Appl. Fract. Mech. 2022, 121, 103519. [Google Scholar] [CrossRef]
- Li, X.-K.; Zhu, S.-P.; Liao, D.; Correia, J.A.F.O.; Berto, F.; Wang, Q. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int. J. Fatigue 2022, 159, 106788. [Google Scholar] [CrossRef]
- Pluvinage, G. Fatigue and fracture emanating from notch; the use of the notch stress intensity factor. Nucl. Eng. Des. 1998, 185, 173–184. [Google Scholar] [CrossRef]
- Lou, B.; Barltrop, N. Universal hybrid method and approximate closed-form solution for V-notched and V-notch-cracked plate under tensile and in-plane bending. Theor. Appl. Fract. Mech. 2020, 108, 102579. [Google Scholar] [CrossRef]
- Visentin, A.; Campagnolo, A.; Meneghetti, G. Analytical expressions to estimate rapidly the notch stress intensity factors at V-notch tips using the Peak Stress Method. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1572–1595. [Google Scholar] [CrossRef]
- Alshaiji, A.; Albinmousa, J.; Peron, M.; AlMangour, B.; Ali, U. Analyzing quasi-static fracture of notched magnesium ZK60 using notch fracture toughness and support vector machine. Theor. Appl. Fract. Mech. 2022, 121, 103463. [Google Scholar] [CrossRef]
- Stark, H.L.; Ibrahim, R.N. Estimating fracture toughness from small specimens. Eng. Fract. Mech. 1986, 25, 395–401. [Google Scholar] [CrossRef]
- Ibrahim, R.N.; Kotousov, A. Eccentricity correction for the evaluation of fracture toughness from cylindrical notched test smallspecimens. Eng. Fract. Mech. 1999, 64, 49–58. [Google Scholar] [CrossRef]
- Bozkurt, F.; Schmidová, E. Fracture toughness evaluation of S355 steel using circumferentially notched round bars. Period. Polytech. Transp. Eng. 2019, 47, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Freudenthaler, P.J.; Bradler, P.R.; Lang, R.W. Novel test system and test procedure for fatigue crack growth testing with cracked round bar (CRB) specimens. Polym. Test. 2019, 78, 105998. [Google Scholar] [CrossRef]
- Singh, D.K.; Raman, R.K.S.; Maiti, S.K.; Bhandakkar, T.K.; Pal, S. Investigation of role of alloy microstructure in hydrogen-assisted fracture of AISI 4340 steel using circumferentially notched cylindrical specimens. Mat. Sci. Eng. A 2017, 698, 191–197. [Google Scholar] [CrossRef]
- Poduška, J.; Hutař, P.; Frank, A.; Kučera, J.; Sadílek, J.; Pinter, G.; Náhlík, L. Numerical simulations of cracked round bar test: Effect of residual stresses and crack asymmetry. Eng. Fract. Mech. 2018, 203, 18–31. [Google Scholar] [CrossRef]
- Toribio, J.; González, B.; Matos, J.C. Crack tip field in eccentric circumferentially cracked round bar (CCRB) under tensile loading. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 2153–2161. [Google Scholar] [CrossRef]
- Guo, W.; Shen, H.; Li, H. Stress intensity factors for elliptical surface cracks in round bars with different stress concentration coefficient. Int. J. Fatigue 2003, 25, 733–741. [Google Scholar] [CrossRef]
- Lin, X.B.; Smith, R.A. Fatigue growth simulation for cracks in notched and unnotched round bars. Int. J. Mech. Sci. 1998, 40, 405–419. [Google Scholar] [CrossRef]
- Ibrahim, R.N.; Stark, H.L. Establishing Klc from eccentrically fatigue cracked small circumferentially grooved cylindrical specimens. Int. J. Fract. 1990, 44, 179–188. [Google Scholar] [CrossRef]
- Toribio, J. On the concept of micro-fracture map (MFM) and its role in structural integrity evaluations in materials science and engineering: A Tribute to Jorge Manrique. Procedia Struct. Integr. 2020, 28, 2432–2437. [Google Scholar] [CrossRef]
- Toribio, J.; Vergara, D. Influence of microstructural anisotropy on the hydrogen-assisted fracture of notched samples of progressively drawn pearlitic steel. Procedia Struct. Integr. 2020, 28, 2390–2395. [Google Scholar] [CrossRef]
- Toribio, J. Hydrogen-assisted microdamage of eutectoid steel in the presence of notches: The tearing topography surface. Metals 2023, 13, 1365. [Google Scholar] [CrossRef]
- Irwin, G.R. Analysis of stresses and strain near the end of a crack traversing a plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar] [CrossRef]
- Marc Analysis Research Corporation. MARC User Information; Marc Analysis Research Corporation: Palo Alto, CA, USA, 1994. [Google Scholar]
- Benthem, J.P.; Koiter, W.T. Asymptotic approximations to crack problems. In Method of Analysis and Solutions of Crack Problems; Sih, G.C., Ed.; Noordhoft International Publishing: Croningen, The Netherlands, 1973; pp. 131–178. [Google Scholar]
- Gray, T.G.F. Convenient closed form stress intensity factors for common crack configurations. Int. J. Fract. 1977, 13, 65–75. [Google Scholar] [CrossRef]
- Tada, H.; Paris, P.C.; Irwin, G.R. The Stress Analysis of Cracks Handbook, 3rd ed.; ASME Press: New York, NY, USA, 1985. [Google Scholar]
- Smirnov, V.; Vidyushenkov, S. Stress intensity factor for cylindrical specimen with external circular crack under tension. In International Scientific Siberian Transport Forum-TransSiberia 2021; Manakov, A., Edigarian, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 408–417. [Google Scholar]
- Lefort, P. Stress intensity factors for a circumferential crack emanating from a notch in a round tensile bar. Eng. Fract. Mech. 1978, 10, 897–904. [Google Scholar] [CrossRef]
- Toribio, J.; Matos, J.C.; González, B. Notch effect on the stress intensity factor in tension-loaded circumferentially cracked bars. Eng. Fract. Mech. 2018, 202, 436–444. [Google Scholar] [CrossRef]
- Toribio, J.; González, B.; Matos, J.C.; González, I. Notch effects on the stress intensity factor and on the fatigue crack path for eccentric circular internal cracks in elliptically notched round bars under tensile loading. Materials 2022, 15, 9091. [Google Scholar] [CrossRef] [PubMed]
- Meguid, S.A. Three-dimensional finite element analysis of circumferentially-cracked notched and un-notched cylindrical components. Eng. Fract. Mech. 1990, 37, 361–371. [Google Scholar] [CrossRef]
Mesh | d/D = 3/30 & e/D = 6/30 | d/D = 13/30 & e/D = 1/30 |
---|---|---|
Used in this paper | 4400 | 5700 |
With a more refined crack end | 5840 | 7240 |
With a more refined notch area | 8320 | 10,120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toribio, J.; Matos, J.-C.; González, B.; González, I. Stress Intensity Factor Solutions for Eccentric Annular External Cracks in Notched Round Bars under Tensile Loading. Metals 2023, 13, 1453. https://doi.org/10.3390/met13081453
Toribio J, Matos J-C, González B, González I. Stress Intensity Factor Solutions for Eccentric Annular External Cracks in Notched Round Bars under Tensile Loading. Metals. 2023; 13(8):1453. https://doi.org/10.3390/met13081453
Chicago/Turabian StyleToribio, Jesús, Juan-Carlos Matos, Beatriz González, and Iván González. 2023. "Stress Intensity Factor Solutions for Eccentric Annular External Cracks in Notched Round Bars under Tensile Loading" Metals 13, no. 8: 1453. https://doi.org/10.3390/met13081453
APA StyleToribio, J., Matos, J. -C., González, B., & González, I. (2023). Stress Intensity Factor Solutions for Eccentric Annular External Cracks in Notched Round Bars under Tensile Loading. Metals, 13(8), 1453. https://doi.org/10.3390/met13081453