Mechanical, Tribological, and Corrosive Properties of NbCrCx and NbCrCxNy Coatings with Various Nitrogen and Carbon Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition Setup
2.2. Coating Characterization
2.3. Tribology Testing
2.4. Corrosion Testing
3. Results and Discussion
3.1. Composition, Microstructure, Morphology
3.2. Grain Size, Thickness, Surface Roughness, Hardness, and Adhesive Strength
3.3. Coefficient of Friction, Wear Depth, and Wear Rate
3.3.1. Coefficient of Friction
3.3.2. Wear Depth and Wear rate
3.4. Wear Surface and Mechanisms
3.5. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayrhofer, P.H.; Mitterer, C.; Hultman, L.; Clemens, H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006, 51, 1032–1114. [Google Scholar] [CrossRef]
- Kumar, D.D.; Kumar, N.; Kalaiselvam, S.; Radhika, R.; Rabel, A.M.; Jayavel, R. Tribo-mechanical properties of reactive magnetron sputtered transition metal carbide coating. Tribol. Int. 2017, 114, 234–244. [Google Scholar] [CrossRef]
- Günen, A.; Soylu, B.; Karakas, O. Titanium carbide coating to improve surface characteristic, wear and corrosion resistance of spheroidal graphite cast irons. Surf. Coat. Technol. 2022, 437, 128280. [Google Scholar] [CrossRef]
- Cai, F.; Zhou, Q.; Chen, J.; Zhang, S. Effect of inserting the Zr layers on the tribo-corrosion behavior of Zr/ZrN multilayer coatings on titanium alloys. Corros. Sci. 2023, 213, 111002. [Google Scholar] [CrossRef]
- Shao, Y.X.; Yang, Y.; Wang, L.; Zhao, C.C.; Wang, Y.W.; Ma, Y.D.; Cui, Y.H.; Sun, W.W.; Wang, X.Y.; Wang, L.; et al. Microstructure characterization of in-situ ZrC composite coating with graceful toughness and improved tribological properties prepared by plasma spraying. Mater. Charact. 2021, 179, 111382. [Google Scholar] [CrossRef]
- Alam, M.S.; Das, A.K. Advancement in cermet based coating on steel substrate: A review. Mater. Today Proc. 2022, 56, 805–810. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, W.; Yu, W.; Ma, H.; Shao, Y. Effect of TiC additions on the microstructure, mechanical and tribological properties of NbC-CoCrFeNiMn high entropy alloys cermets. Int. J. Refract. Met. Hard Mater. 2023, 112, 106141. [Google Scholar] [CrossRef]
- Zhang, P.; Hao, C.; Han, Y.; Du, F.; Wang, H.; Wang, X.; Sun, J. Electrochemical behavior and surface conductivity of NbC modified Tibipolar plate for proton exchange membrane fuel cell. Surf. Coat. Technol. 2020, 397, 126064. [Google Scholar] [CrossRef]
- Nedfors, N.; Tengstrand, O.; Flink, A.; Andersson, A.M.; Eklund, P.; Hultman, L.; Jansson, U. Reactive sputtering of NbCx-based nanocomposite coatings An up-scaling study. Surf. Coat. Technol. 2014, 253, 100–108. [Google Scholar] [CrossRef]
- Kot, M.; Major, Ł.; Chronowska-Przywara, K.; Lackner, J.M.; Waldhauser, W.; Rakowski, W. The advantages of incorporating CrxC nanograins into an a-C:H matrix in tribological coatings. Mater. Des. 2014, 56, 981–989. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, X.; Wang, Y.; Duan, W.; Wang, L. Microstructure evolution, wear and corrosion resistance of CrC nanocomposite coatings in seawater. Appl. Surf. Sci. 2018, 457, 914–924. [Google Scholar] [CrossRef]
- Liu, R.; Jia, Q.; Zhang, B.; Lai, Z.; Chen, L. Protective coatings for metal bipolar plates of fuel cells: A review. Int. J. Hydrog. Energy 2022, 47, 22915–22937. [Google Scholar] [CrossRef]
- Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406. [Google Scholar]
- Yeh, J.W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D. Hard and superhard nanostructured and nanocomposite coatings. In Nanomaterials-Based Coatings; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–337. [Google Scholar]
- Zhao, S.; He, L.X.; Fan, X.X.; Liu, C.H.; Long, J.P.; Wang, L.; Chang, H.; Wang, J.; Zhang, W. Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel. Surf. Coat. Technol. 2019, 375, 215–220. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Muratore, C.; Aouadi, S.M. Hard coatings with high temperature adaptive lubrication and contact thermal management. Surf. Coat. Technol. 2014, 257, 247–265. [Google Scholar] [CrossRef]
- Wang, P.; Takeno, T.; Fontaine, J.; Aono, M.; Adachi, K.; Miki, H.; Takagi, T. Effects of substrate bias voltage and target sputtering power on the structural and tribological properties of carbon nitride coatings. Mater. Chem. Phys. 2014, 145, 430–440. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Donnet, C.; Belin, M.; Le Mogne, T.; Fernández Ramos, C.; Sayagués, M.J.; Fernández, A. Tribochemical effects on CNx films. Surf. Coat. Technol. 2000, 133, 430–436. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Smyrnova, K.; Bondar, O. Nanocomposite multilayer binary nitride coatings based on transition and refractory metals: Structure and properties. Coatings 2019, 9, 155. [Google Scholar] [CrossRef]
- Wu, Z.; Qing, H.; Guo, H.; Chen, Y. Growth and mechanical properties of Nb–Cr carbide coatings on graphite by TRD technique. Int. J. Refract. Hard Met. 2021, 101, 105660. [Google Scholar] [CrossRef]
- Castillejo, F.E.; Marulanda, D.M.; Olaya, J.J.; Alfonso, J.E. Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD. Surf. Coat. Technol. 2014, 254, 104–111. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, H.; Li, R.; Geng, J.; Shao, Z. Nb–Cr–C coated titanium as bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2022, 520, 230797. [Google Scholar] [CrossRef]
- Emamverdian, A.A.; Sun, Y.; Cao, C.; Pruncu, C.; Wang, Y. Current failure mechanisms and treatment methods of hot forging tools (dies)—A review. Eng. Fail. Anal. 2021, 129, 105678. [Google Scholar] [CrossRef]
- Jehn, H.A. Improvement of the corrosion resistance of PVD hard coating–substrate systems. Surf. Coat. Technol. 2000, 125, 212–217. [Google Scholar] [CrossRef]
- Swann, S. Magnetron sputtering. Phys. Technol. 1988, 19, 67–75. [Google Scholar] [CrossRef]
- Xiang, Y.; Chengbiao, W.; Yang, L.; Deyang, Y.; Tingyan, X. Recent Developments in Magnetron Sputtering. Plasma Sci. Technol. 2006, 8, 337. [Google Scholar] [CrossRef]
- Buckle, H. The Science of Hardness Testing and Its Research Applications; Westbrook, J.H., Conrad, H., Eds.; American Society for Metals: Materials Park, OH, USA, 1973; p. 453. [Google Scholar]
- Nedfors, N.; Tengstrand, O.; Lewin, E.; Furlan, A.; Eklund, P.; Hultman, L.; Jansson, U. Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2011, 206, 354–359. [Google Scholar] [CrossRef]
- Liu, C.; Ju, H.; Han, P.; Quan, C.; Mo, C.; Zhao, Y.; Geng, Y.; Xu, J.; Yu, L. The influence of carbon content on the microstructure, mechanical and frictional property of chromium carbon nitride composite films. Vacuum 2020, 178, 109368. [Google Scholar] [CrossRef]
- Zhang, K.; Balasubramanian, K.; Ozsdolay, B.D.; Mulligan, C.P.; Khare, S.V.; Zheng, W.T.; Gall, D. Epitaxial NbC×N1−×(001) layers: Growth, mechanical properties, and electrical resistivity. Surf. Coat. Technol. 2015, 277, 136–143. [Google Scholar] [CrossRef]
- Christiansen, T.; Somers, M.A.J. Low temperature gaseous nitriding and carburising of stainless steel. Surf. Eng. 2005, 21, 445–455. [Google Scholar] [CrossRef]
- Santiago, J.A.; Fernández-Martínez, I.; Sánchez-López, J.C.; Rojas, T.C.; Wennberg, A.; Bellido-González, V.; Molina-Aldareguia, J.M.; Monclús, M.A.; González-Arrabal, R. Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS. Surf. Coat. Technol. 2020, 382, 124899. [Google Scholar] [CrossRef]
- Liang, S.C.; Tsai, D.C.; Chang, Z.C.; Sung, H.S.; Lin, Y.C.; Yeh, Y.J.; Deng, M.J.; Shieu, F.S. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl. Surf. Sci. 2011, 258, 399–403. [Google Scholar] [CrossRef]
- Liu, T.; Xia, S.; Bai, Q.; Zhou, B.; Lu, Y.; Shoji, T. Evaluation of Grain Boundary Network and Improvement of Intergranular Cracking Resistance in 316L Stainless Steel after Grain Boundary Engineering. Materials 2019, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Goettingen Math.-Phys. Kl. 1918, 2, 98–100. [Google Scholar]
- Bouabibsa, I.; Lamri, S.; Alhussein, A.; Minea, T.; Sanchette, F. Plasma investigations and deposition of Me-DLC (Me = Al, Ti or Nb) obtained by a magnetron sputtering-RFPECVD hybrid process. Surf. Coat. Technol. 2018, 354, 351–359. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Wu, W.Y.; Ting, J.M. Microstructure and optical properties of chromium containing amorphous hydrogenated carbon thin films (a-C:H/Cr). Thin Solid Films 2009, 517, 4724–4727. [Google Scholar] [CrossRef]
- Brčka, J.; Hotový, I. Processes on the target, discharge and NbN film behaviour in reactive dc magnetron deposition. Vacuum 1995, 46, 1407–1412. [Google Scholar] [CrossRef]
- Zhang, K.; Wen, M.; Wang, S.; Deng, R.P.; Gall, D.; Zheng, W.T. Sputter deposited NbCxNy films: Effect of nitrogen content on structure and mechanical and tribological properties. Surf. Coat. Technol. 2014, 258, 746–753. [Google Scholar] [CrossRef]
- Savvides, N.; Bell, T.J. Hardness and elastic modulus of diamond and diamond-like carbon films. Thin Solid Films 1993, 228, 289–292. [Google Scholar] [CrossRef]
- Yate, L.; Coy, L.E.; Wang, G.; Beltrán, M.; Díaz-Barriga, E.; Saucedo, E.M.; Ceniceros, M.A.; Załęski, K.; Llarena, I.; Möllera, M.; et al. Tailoring mechanical properties and electrical conductivity of flexible niobium carbide nanocomposite thin films. RSC Adv. 2014, 4, 61355. [Google Scholar] [CrossRef]
- Günen, A.; Açıkgöz, H.H.; Keddam, M.; Karahan, I.H. Characterizations and Kinetics of Refractory Niobium Carbide Coatings on AISI D3 Steel. J. Mater. Eng. Perform. 2022, 31, 365–378. [Google Scholar] [CrossRef]
- Li, D.; Chung, Y.W. Mechanical properties of amorphous carbon nitride thin films prepared by reactive magnetron sputter-deposition. Tribol. Lett. 1995, 1, 87–93. [Google Scholar] [CrossRef]
- Umada, N.; Kanda, K.; Niibe, M.; Hirata, Y.; Ohtake, N.; Akasaka, H. Oriented sp2 bonded carbon structure of hydrogenated amorphous carbon films. Diam. Relat. Mater. 2023, 131, 109533. [Google Scholar] [CrossRef]
- Han, B.B.; Ju, D.Y.; Chai, M.R.; Zhao, H.J.; Sato, S. Corrosion Resistance of DLC Film-Coated SUS316L Steel Prepared by Ion Beam Enhanced Deposition. Adv. Mater. Sci. Eng. 2019, 2019, 7480618. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, Y.G.; Chen, X.; Liu, M.; Zheng, Z.; Peng, X. Carbon corrosion mechanism on nitrogen-doped carbon support d A density functional theory study. Int. J. Hydrog. Energy 2021, 46, 13273–13282. [Google Scholar] [CrossRef]
- Dong, H.; He, S.; Wang, X.; Zhang, C.; Sun, D. Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC. Diam. Relat. Mater. 2020, 110, 108156. [Google Scholar] [CrossRef]
Coating Structure | Coating Code | C2H2 Flux (sccm) | N2 Flux (sccm) | Fixed Parameters |
---|---|---|---|---|
Interlayer | Cr | 0 | 0 | Cr target current: 1.5 A Bias voltage: 150 V Time: 6 min |
Main layer | NbCrC49 | 10 | 0 | Nb target current: 2.5 A Cr target current: 0.5 A Bias voltage: 35 V Time: 90 min |
NbCrC61 | 12 | 0 | ||
NbCrC71 | 14 | 0 | ||
NbCrC34N26 | 6 | 6 | ||
NbCrC43N16 | 8 | 4 | ||
NbCrC55N5 | 10 | 2 |
Coating Code | Nb | Cr | C | N | O |
---|---|---|---|---|---|
NbCrC49 | 30.3 ± 0.3 | 12.9 ± 0.3 | 49.1 ± 0.5 | 0 | 7.7 ± 0.3 |
NbCrC61 | 25.1 ± 0.2 | 8.0 ± 0.5 | 60.5 ± 0.2 | 0 | 6.4 ± 0.4 |
NbCrC71 | 19.8 ± 0.2 | 5.3 ± 0.1 | 70.6 ± 0.1 | 0 | 4.3 ± 0.1 |
NbCrC34N26 | 23.9 ± 0.2 | 9.9 ± 0.1 | 34.1 ± 0.1 | 26.0 ± 0.2 | 6.1 ± 0.1 |
NbCrC43N16 | 24.0 ± 0.1 | 9.7 ± 0.2 | 43.3 ± 0.1 | 16.1 ± 0.1 | 6.9 ± 0.1 |
NbCrC55N5 | 24.5 ± 0.1 | 9.4 ± 0.1 | 55.3 ± 0.1 | 4.5 ± 0.3 | 6.3 ± 0.2 |
Coating Code | sp2 C-C, % | sp3 C-C, % | C=N, % |
---|---|---|---|
NbCrC49 | 37.3 | 62.7 | - |
NbCrC61 | 41.5 | 58.5 | - |
NbCrC71 | 55.1 | 44.9 | - |
NbCrC34N26 | 19.9 | 16.6 | 63.5 |
NbCrC43N16 | 34.4 | 23.2 | 42.4 |
NbCrC55N5 | 41.5 | 28.9 | 29.6 |
Coating Code | Grain Size (nm) | Thickness (μm) | Surface Roughness Ra (nm) | Hardness (GPa) | Hertz Stress (5 N) (MPa) | Hertz Stress (8 N) (MPa) | Adhesive Strength Lc (N) |
---|---|---|---|---|---|---|---|
NbCrC49 | 11.01 | 1.75 ± 0.01 | 31.1 ± 2.9 | 18.8 ± 2.0 | 1540.7 | 1802.0 | >100 |
NbCrC61 | 9.12 | 1.93 ± 0.02 | 21.8 ± 0.9 | 21.0 ± 1.5 | 1488.3 | 1740.8 | >100 |
NbCrC71 | 5.79 | 1.86 ± 0.01 | 21.1 ± 1.6 | 17.7 ± 1.2 | 1375.1 | 1608.3 | 90.2 ± 1.2 |
NbCrC34N26 | 11.78 | 1.52 ± 0.01 | 44.8 ± 3.5 | 21.5 ± 1.6 | 1516.0 | 1773.1 | 18.0 ± 0.7 |
NbCrC43N16 | 10.03 | 1.57 ± 0.01 | 43.6 ± 3.2 | 24.4 ± 1.8 | 1527.5 | 1786.5 | 19.9 ± 0.4 |
NbCrC55N5 | 9.13 | 1.68 ± 0.01 | 29.9 ± 2.9 | 24.5 ± 1.7 | 1513.6 | 1770.3 | >100 |
Coating Code | Load: 5 N | Load: 8 N | ||||||
---|---|---|---|---|---|---|---|---|
COF | Wear Depth (μm) | Wear Width (mm) | Wear Rate 10−6 mm3/Nm | COF | Wear Depth (μm) | Wear Width (mm) | Wear Rate 10−6 mm3/Nm | |
NbCrC49 | 0.18 | 0.22 ± 0.03 | 0.09 ± 0.01 | 1.29 ± 0.13 | 0.17 | 0.29 ± 0.04 | 0.13 ± 0.01 | 1.63 ± 0.19 |
NbCrC61 | 0.16 | 0.16 ± 0.01 | 0.12 ± 0.01 | 1.20 ± 0.09 | 0.15 | 0.24 ± 0.01 | 0.16 ± 0.01 | 1.57 ± 0.09 |
NbCrC71 | 0.15 | 0.28 ± 0.03 | 0.12 ± 0.01 | 2.12 ± 0.19 | 0.15 | 0.42 ± 0.09 | 0.16 ± 0.01 | 2.70 ± 0.57 |
NbCrC34N26 | 0.34 | 0.87 ± 0.03 | 0.34 ± 0.03 | 20.1 ± 1.74 | 0.38 | 1.11 ± 0.09 | 0.48 ± 0.06 | 22.0 ± 2.96 |
NbCrC43N16 | 0.36 | 0.82 ± 0.06 | 0.36 ± 0.02 | 19.7 ± 1.69 | 0.43 | 1.10 ± 0.09 | 0.44 ± 0.03 | 20.3 ± 1.21 |
NbCrC55N5 | 0.13 | 0.13 ± 0.01 | 0.11 ± 0.01 | 0.96 ± 0.04 | 0.13 | 0.20 ± 0.02 | 0.14 ± 0.01 | 1.18 ± 0.09 |
SKH51 | 0.47 | 0.39 ± 0.04 | 0.31 ± 0.06 | 8.11 ± 1.05 | 0.50 | 0.43 ± 0.01 | 0.46 ± 0.02 | 8.33 ± 0.52 |
Coating Code | Icorr, A/cm2 | Ecorr, V | βa, mv/dec | βc, mv/dec |
---|---|---|---|---|
NbCrC49 | 1.40 × 10−6 | −0.416 | 89.54 | 78.71 |
NbCrC61 | 7.86 × 10−6 | −0.410 | 123.02 | 95.76 |
NbCrC71 | 2.90 × 10−5 | −0.424 | 269.94 | 227.50 |
NbCrC34N26 | 5.36 × 10−3 | −0.425 | 262.97 | 327.61 |
NbCrC43N16 | 4.94 × 10−3 | −0.425 | 288.14 | 309.18 |
NbCrC55N5 | 7.65 × 10−5 | −0.428 | 353.79 | 298.23 |
SKH51 | 2.16 × 10−2 | −0.410 | 407.36 | 456.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-L.; Chiu, S.-M.; Kao, W.-H.; Hsueh, H.-C.; Hsieh, T.-Y. Mechanical, Tribological, and Corrosive Properties of NbCrCx and NbCrCxNy Coatings with Various Nitrogen and Carbon Contents. Metals 2023, 13, 1488. https://doi.org/10.3390/met13081488
Su Y-L, Chiu S-M, Kao W-H, Hsueh H-C, Hsieh T-Y. Mechanical, Tribological, and Corrosive Properties of NbCrCx and NbCrCxNy Coatings with Various Nitrogen and Carbon Contents. Metals. 2023; 13(8):1488. https://doi.org/10.3390/met13081488
Chicago/Turabian StyleSu, Yean-Liang, Sung-Mao Chiu, Wen-Hsien Kao, Hsiang-Chun Hsueh, and Tsung-Yen Hsieh. 2023. "Mechanical, Tribological, and Corrosive Properties of NbCrCx and NbCrCxNy Coatings with Various Nitrogen and Carbon Contents" Metals 13, no. 8: 1488. https://doi.org/10.3390/met13081488
APA StyleSu, Y. -L., Chiu, S. -M., Kao, W. -H., Hsueh, H. -C., & Hsieh, T. -Y. (2023). Mechanical, Tribological, and Corrosive Properties of NbCrCx and NbCrCxNy Coatings with Various Nitrogen and Carbon Contents. Metals, 13(8), 1488. https://doi.org/10.3390/met13081488