The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Kinetics of PEO Coatings Formation
3.2. Surface and Cross-Sectional Microstructure of PEO Coatings
3.3. X-ray Diffraction Analysis
3.4. Microhardness of PEO Coatings
3.5. Electrochemical Behavior of PEO Coatings
4. Discussion
5. Conclusions
- (1)
- The manufacturability of the Al–Ca alloy in terms of the formation of oxide coatings on their surface was confirmed. The presence of Al4Ca eutectic colonies did not affect the kinetics of coating growth in comparison with pure aluminum.
- (2)
- Despite the comparable volume fractions of the eutectic phases in the Al4Si and Al1Ca alloys, there were noticeable differences in the porosity, phase composition, and mechanical properties of the coatings. Increasing the amount of Si in Al led to higher internal and surface porosity of the coatings. Uniform coatings with the smallest number of defects were formed on the surface of pure aluminum and the Al–Ca alloy. The phase composition and mechanical properties of the coating on the Al–Ca alloy were close to those for pure aluminum.
- (3)
- The α-Al2O3 phase was predominant in the coatings on pure Al and the Al–Ca alloy, while Si addition to pure Al hindered the formation of the α-Al2O3 phase.
- (4)
- The microhardness of the coatings varied in the 660–1180 HV range, which was 20–30 times higher than that for the uncoated base alloys. The coating on the Al–Ca alloy exhibited the highest peak hardness due to the formation of a greater fraction of the α-Al2O3 phase.
- (5)
- Electrochemical studies showed that silicon and calcium additions to pure aluminum led to an increase in the corrosion activity, but Al1Ca exhibited a greater corrosion resistance than the conventional Al4Si casting alloys. It was found that PEO coatings significantly increased the corrosion resistance of all the studied alloys, mainly showing itself in a decrease in the corrosion current density and an increase in the corrosion potential. Of all the PEO-treated alloys studied, Al and Al1Ca had the lowest corrosion current density and hence the highest corrosion resistance due to the composition and uniformity of the coating.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polmear, I. Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 216–226. [Google Scholar]
- Belov, N.A.; Naumova, E.A.; Akopyan, T.K. Aluminium-Based Eutectic Alloys: New Alloying Systems; Ore and Metals PH: Moscow, Russia, 2016; pp. 191–235. [Google Scholar]
- Akopyan, T.K.; Letyagin, N.V.; Avxentieva, N.N. High-tech alloys based on Al-Ca-La(-Mn) eutectic system for casting, metal forming and selective laser melting. Non Ferr. Met. 2020, 1, 52–59. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Akopyan, T.K.; Doroshenko, V.V. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites. JOM 2018, 70, 2710–2715. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Doroshenko, V.V.; Korotkova, N.O.; Avxentieva, N.N. Determination of the Parameters of a Peritectic Reaction that Occurred in the Al-Rich Region of the Al–Ca–Mn System. Phys. Met. Metallogr. 2022, 123, 759–767. [Google Scholar] [CrossRef]
- Letyagin, N.V.; Shurkin, P.K.; Nguen, Z.; Koshmin, A.N. Effect of Thermodeformation Treatment on the Structure and Mechanical Properties of the Al3Ca1Cu1.5Mn Alloy. Phys. Met. Metallogr. 2021, 122, 814–819. [Google Scholar] [CrossRef]
- Akopyan, T.K.; Letyagin, N.V.; Sviridova, T.A.; Korotkova, N.O.; Prosviryakov, A.S. New Casting Alloys Based on the Al + Al4(Ca,La) Eutectic. JOM 2020, 72, 3779–3786. [Google Scholar] [CrossRef]
- Naumova, E.; Doroshenko, V.; Barykin, M.; Sviridova, T.; Lyasnikova, A.; Shurkin, P. Hypereutectic Al-Ca-Mn-(Ni) Alloys as Natural Eutectic Composites. Metals 2021, 11, 890. [Google Scholar] [CrossRef]
- Shurkin, P.K.; Belov, N.A.; Musin, A.F.; Aksenov, A.A. Novel High-Strength Casting Al−Zn−Mg−Ca−Fe Aluminum Alloy without Heat Treatment. Russ. J. Non-Ferr. Met. 2020, 61, 179–187. [Google Scholar] [CrossRef]
- Belov, N.A.; Akopyan, T.K.; Korotkova, N.O.; Naumova, E.A.; Pesin, A.M.; Letyagin, N.V. Structure and Properties of Al-Ca (Fe, Si, Zr, Sc) Wire Alloy Manufactured from As-Cast Billet. JOM 2020, 72, 3760–3768. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Ilyukhin, V.D.; Doroshenko, V.V. Structure and mechanical properties of Al—6% Ca—1% Fe alloy foundry goods, obtained by die casting. Tsvetn. Met. 2017, 3, 69–75. [Google Scholar] [CrossRef]
- Fokin, D.; Matveev, S.; Vakhromov, R.; Alabin, A. Effect of Alloying Elements on Strength Properties and Casting Properties of Corrosion Resistant Quench-Free Al–Ca Alloys. In Light Metals; Eskin, D., Ed.; Springer: Cham, Switzerland, 2022; pp. 113–118. [Google Scholar]
- Shurkin, P.K.; Letyagin, N.V.; Yakushkova, A.I.; Samoshina, M.E.; Ozherelkov, D.Y.; Akopyan, T.K. Remarkable thermal stability of the Al-Ca-Ni-Mn alloy manufactured by laser-powder bed fusion. Mater. Lett. 2021, 285, 129074. [Google Scholar] [CrossRef]
- Rakoch, A.G.; Gladkova, A.A.; Dub, A.V. Plasma Electrolytic Treatment of Aluminum and Titanium Alloys; MISiS PH: Moscow, Russia, 2017; pp. 8–27. [Google Scholar]
- Zhu, L.; Guo, Z.; Zhang, Y.; Li, Z.; Sui, M. A mechanism for the growth of a plasma electrolytic oxide coating on Al. Electrochim. Acta 2016, 208, 296–303. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Qi, C.; Xue, Y.; Wan, Y.; Sun, H. Enhanced corrosion and tribocorrosion behavior of plasma electrolytic oxidized coatings on 5052 aluminum alloy with addition of pullulan to silicate electrolyte. J. Alloys Compd. 2023, 960, 170782. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, W.; Wang, X.; Wang, Y.; Yue, H.; Li, Q.; Yang, X.; Guo, C.; Li, C. Micro-arc oxidation of Al alloys: Mechanism, microstructure, surface properties, and fatigue damage behavior. J. Mater. Res. Technol. 2023, 23, 4307–4333. [Google Scholar] [CrossRef]
- Rodriguez, L.; Paris, J.-Y.; Denape, J.; Delbé, K. Micro-Arcs Oxidation Layer Formation on Aluminium and Coatings Tribological Properties—A Review. Coatings 2023, 13, 373. [Google Scholar] [CrossRef]
- Wang, P.; Wu, T.; Xiao, Y.T.; Zhang, L.; Pu, J.; Cao, W.J.; Zhong, X.M. Characterization of micro-arc oxidation coatings on aluminum drill pipes at different current density. Vacuum 2017, 142, 21–28. [Google Scholar] [CrossRef]
- Markov, M.A.; Bykova, A.D.; Krasikov, A.V.; Farmakovskii, B.V.; Gerashchenkov, D.A. Formation of Wear- and Corrosion-Resistant Coatings by the Microarc Oxidation of Aluminum. Refract. Ind. Ceram. 2018, 59, 207–214. [Google Scholar] [CrossRef]
- Famiyeh, L.; Huang, X. Plasma Electrolytic Oxidation Coatings on Aluminum Alloys: Microstructures, Properties, and Applications. Mod. Concept. Mater. Sci. 2019, 2, 000526. [Google Scholar]
- Gulec, A.E.; Gencer, Y.; Tarakci, M. The characterization of oxide based ceramic coating synthesized on Al-Si binary alloys by microarc oxidation. Surf. Coat. Technol. 2015, 269, 100–107. [Google Scholar] [CrossRef]
- Li, K.; Li, W.; Zhang, G.; Zhu, W.; Zheng, F.; Zhang, D.; Wang, M. Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. J. Alloys Compd. 2019, 790, 650–656. [Google Scholar] [CrossRef]
- Li, K.; Li, W.; Zhang, G.; Wang, M.; Tang, P. Influence of surface etching pretreatment on PEO process of eutectic Al–Si alloy. Chin. J. Chem. Eng. 2015, 23, 1572–1578. [Google Scholar] [CrossRef]
- Cengiz, S.; Tarakci, M.; Gencer, Y.; Devecili, A.O.; Azakli, Y. Oxide based ceramic coating on Al-4Cu alloy by microarc oxidation. Acta Phys. Pol. A 2013, 123, 445–448. [Google Scholar] [CrossRef]
- Agureev, L.; Savushkina, S.; Ashmarin, A.; Borisov, A.; Apelfeld, A.; Anikin, K.; Tkachenko, N.; Gerasimov, M.; Shcherbakov, A.; Ignatenko, V.; et al. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites. Metals 2018, 8, 459. [Google Scholar] [CrossRef]
- Tarakci, M. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys. Mater. Char. 2011, 62, 1214–1221. [Google Scholar] [CrossRef]
- Gencer, Y.; Tarakci, M.; Gulec, A.E.; Oter, Z.C. Plasma electrolytic oxidation of binary Al-Sn alloys. Acta Phys. Pol. A 2014, 125, 659–663. [Google Scholar] [CrossRef]
- Gencer, Y.; Gulec, A.E. The effect of Zn on the microarc oxidation coating behavior of synthetic Al-Zn binary alloys. J. Alloys Compd. 2012, 525, 159–165. [Google Scholar] [CrossRef]
- Cengiz, S. Synthesis of eutectic Al–18Ce alloy and effect of cerium on the PEO coating growth. Mater. Chem. Phys. 2020, 247, 122897. [Google Scholar] [CrossRef]
- Oter, Z.C.; Gencer, Y.; Tarakci, M. The characterization of the coating formed by Microarc oxidation on binary Al-Mn alloys. J. Alloys Compd. 2015, 650, 185–192. [Google Scholar] [CrossRef]
- Cosan, K.A.; Gunduz, K.O.; Tarakcı, M.; Gencer, Y. Plasma electrolytic oxidation of as-cast and heat-treated binary Al-Ni alloys. Surf. Coat. Technol. 2022, 450, 128998. [Google Scholar] [CrossRef]
- Rogov, A.B.; Lyu, H.; Matthews, A.; Yerokhin, A. AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surf. Coat. Technol. 2020, 399, 126116. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Cao, X.; Cha, L.; Ye, R.; Ramachandran, C.S. Significance of plasma electrolytic oxidation treatment on corrosion and sliding wear performances of selective laser melted AlSi10Mg alloy. Mater. Charact. 2021, 181, 111479. [Google Scholar] [CrossRef]
- Mora-Sanchez, H.; Olmo, R.; Rams, J.; Torres, B.; Mohedano, M.; Matykina, E.; Arrabal, R. Hard Anodizing and Plasma Electrolytic Oxidation of an Additively Manufactured Al-Si alloy. Surf. Coat. Technol. 2021, 420, 127339. [Google Scholar] [CrossRef]
- Wu, T.; Blawerta, C.; Zheludkevich, M.L. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process. J. Mater. Sci. Technol. 2020, 20, 75–85. [Google Scholar] [CrossRef]
- Polunin, A.V.; Cheretaeva, A.O.; Borgardt, E.D.; Rastegaev, I.A.; Krishtal, M.M.; Katsman, A.V.; Yasnikov, I.S. Improvement of oxide layers formed by plasma electrolytic oxidation on cast Al–Si alloy by incorporating TiC nanoparticles. Surf. Coat. Technol. 2021, 423, 127603. [Google Scholar] [CrossRef]
- Shelekhov, E.V.; Sviridova, T.A. Programs for X-ray analysis of polycrystals. Met. Sci. Heat Treat. 2000, 42, 309–313. [Google Scholar] [CrossRef]
- Pezzato, L.; Rigon, M.; Martucci, A.; Brunelli, K.; Dabala, M. Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys. Surf. Coat. Technol. 2019, 366, 114–123. [Google Scholar] [CrossRef]
- Fathi, P.; Mohammadi, M.; Duan, X.; Nasiri, A.M. A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum. J. Mater. Process. Technol. 2018, 259, 1–14. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Zhang, J.; Gu, X.; Qin, P.; Dai, N.; Li, X.; Kruth, J.-P.; Zhang, L.-C. Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting. Mater. Des. 2018, 146, 239–248. [Google Scholar] [CrossRef]
- Stevens, E.L.; Toman, J.; To, A.C.; Chmielus, M. Variation of hardness, microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids. Mater. Des. 2017, 119, 188–198. [Google Scholar] [CrossRef]
- Volkova, O.V.; Dub, A.V.; Rakoch, A.G.; Gladkova, A.A.; Samoshina, M.E. Comparison of pitting corrosion tendency for castings made of Al6Ca, Al1Fe, Al6Ca1Fe experimental alloys and AK12M2 industrial alloy. Izv. Vuzov. Tsvetnaya Metall. 2017, 5, 75–81. [Google Scholar] [CrossRef]
- Kong, D.; Dong, C.; Ni, X.; Li, X. Corrosion of metallic materials fabricated by selective laser melting. Mater Degrad. 2019, 3, 24. [Google Scholar] [CrossRef]
- Pezzato, L.; Dabalà, M.; Gross, S.; Brunelli, K. Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings. Surf. Coat. Technol. 2020, 404, 126477. [Google Scholar] [CrossRef]
No. | Alloy | Actual Chemical Composition, wt.% | Q, wt.% (Vol. %) | HV | ||
---|---|---|---|---|---|---|
Al | Si | Ca | ||||
1 | Al | 99.99 | - | - | - | 17 |
2 | Al4Si | 95.80 | 4.20 | - | 2.70 (3.10) | 43 |
3 | Al1Ca | 99.10 | - | 0.80 | 2.95 (3.44) | 27 |
No | Alloy, wt.% | Phase | Pearson Symbol | Volume Fraction, % | Lattice Parameters, Å | |
---|---|---|---|---|---|---|
a | c | |||||
1 | Al (purity 99.9%) | Al | cF4/1 | 2.7 ± 0.1 | 4.049 | - |
α-Al2O3 | hR10/1 | 60.1 ± 0.3 | 4.758 | 12.997 | ||
γ-Al2O3 | cF120/4 | 37.1 ± 0.3 | 7.903 | - | ||
2 | Al4Si | Al | cF4/1 | 21.1 ± 0.2 | 4.047 | - |
α-Al2O3 | hR10/1 | 1.4 ± 0.1 | - | - | ||
γ-Al2O3 | cF120/4 | 77.5 ± 0.2 | 7.896 | - | ||
3 | Al1Ca | Al | cF4/1 | 7.6 ± 0.1 | 4.050 | - |
α-Al2O3 | hR10/1 | 62.3 ± 0.3 | 4.759 | 12.994 | ||
γ-Al2O3 | cF120/4 | 30.1 ± 0.3 | 7.904 | - |
Alloy | Microhardness, HV |
---|---|
Al (purity 99.9%) | 955 (740–1180) |
Al4Si | 843 (660–1030) |
Al1Ca | 991 (840–1150) |
Sample | Corrosion Potential, Ecorr. (mV) | Corrosion Current Density, icorr. (mA/cm2) |
---|---|---|
Al (purity 99.9%) | −625 | 8.2 × 10−3 |
Al (purity 99.9%) + PEO | −506 | 1.56 × 10−3 |
Al4Si | −570 | 18.3 × 10−3 |
Al4Si + PEO | −258 | 4.2 × 10−3 |
Al1Ca | −745 | 10.1 × 10−3 |
Al1Ca + PEO | −203 | 1.9 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letyagin, N.V.; Akopyan, T.K.; Sokorev, A.A.; Sviridova, T.A.; Cherkasov, S.O.; Mansurov, Y.N. The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation. Metals 2023, 13, 1509. https://doi.org/10.3390/met13091509
Letyagin NV, Akopyan TK, Sokorev AA, Sviridova TA, Cherkasov SO, Mansurov YN. The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation. Metals. 2023; 13(9):1509. https://doi.org/10.3390/met13091509
Chicago/Turabian StyleLetyagin, Nikolay V., Torgom K. Akopyan, Alexander A. Sokorev, Tatiana A. Sviridova, Stanislav O. Cherkasov, and Yulbarskhon N. Mansurov. 2023. "The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation" Metals 13, no. 9: 1509. https://doi.org/10.3390/met13091509
APA StyleLetyagin, N. V., Akopyan, T. K., Sokorev, A. A., Sviridova, T. A., Cherkasov, S. O., & Mansurov, Y. N. (2023). The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation. Metals, 13(9), 1509. https://doi.org/10.3390/met13091509