Corrosion Protection of Steel by NO3− and NO2− Intercalated Mg-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Preparation of MAL
2.2.2. Preparation of Simulated Pore Solution of Alkali-Activated Slag
2.2.3. Chloride Adsorption Equilibrium Isotherms
2.2.4. Electrochemical Measurement
2.2.5. Structural Characterization
3. Results and Discussion
3.1. Characterization of Synthesized MAL
3.2. Chloride Adsorption and the Change of pH Value
3.2.1. Chloride Adsorption Equilibrium Isotherms
3.2.2. The Change of pH Value
3.3. Corrosion Protection Performance
3.3.1. Corrosion Potential of Steel
3.3.2. Electrochemical Impedance Spectroscopy (EIS) Measurement
3.3.3. Potentiodynamic Polarization
3.3.4. Optical Micrographs
3.4. Microstructure Characterization
4. Conclusions
- (1)
- MAL-N3 and MAL-N2 have been successfully synthesized by the calcination rehydration method, presenting hexagonal layered structures with a size of 250~400 nm and a thickness of 10 nm, and they are stacked into a three-dimensional network. Furthermore, the synthesized MAL-N3 and MAL-N2 with a trigonal crystal system similar to brucite possess well crystal forms presented by sharp diffraction reflections in XRD patterns.
- (2)
- MAL-N3 and MAL-N2 have lower chloride adsorption capacity in SH compared with that in OPCH. The Langmuir isotherm is more suitable to describe the chloride adsorption of MAL-N3 and MAL-N2 than the Freundlich isotherm. The chloride adsorption capacities of MAL-N3 in OPCH and SH are higher than those of MAL-N2. Due to the competitive adsorption between OH− and Cl−, the chloride adsorption capacity of MAL in SH with a higher pH value is lower than that in OPCH.
- (3)
- Compared to MAL in simulated pore solution OPCH, MAL in SH has a better chloride-induced corrosion inhibition effect. Furthermore, the corrosion inhibition effect of MAL-N2 is superior to that of MAL-N3. The corrosion potentials of the steels in SH in the presence of MAL are more positive compared with those in OPCH. Furthermore, the corrosion potentials of the steels in solution in the presence of MAL-N2 have risen to more positive values compared to the steels with addition of MAL-N3. The polarization resistance of steel in SH in the presence of MAL is higher than that in OPCH; the result of potentiodynamic polarization indicates that the corrosion inhibition effect of MAL-N3 in SH is better than that in OPCH, while MAL-N2 in the two simulated pore solutions has a great corrosion inhibition effect.
- (4)
- Different synergistic effects of NO3− and NO2− intercalated MAL in OPCH and SH contribute to the different corrosion inhibition effects. In XRD patterns, the decrease in d (003) value of MAL-N2 and MAL-N3 in OPCH and SH indicates the anion exchange between Cl− and intercalated anion NO2−, NO3−. The peak at 1271 cm−1 of the FT-IR band of MAL-N2 disappears after Cl− adsorption; furthermore, the intensity of the FT-IR band at 1382 cm−1 of MAL-N3 decreases, suggesting that intercalated NO2− and NO3− have been exchanged with Cl−.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matalkah, F.; Alomari, A.H.; Soroushian, P. Scaled-up production of alkali-activated cement in the presence of carbon dioxide for concrete construction. Case Stud. Constr. Mater. 2020, 13, e00463. [Google Scholar] [CrossRef]
- Mozumder, R.A.; Laskar, A.I.; Hussain, M. Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Constr. Build. Mater. 2017, 132, 412–424. [Google Scholar] [CrossRef]
- Laskar, S.M.; Mozumder, R.A.; Laskar, A.I. Behaviour of RC beam repaired using alkali activated slag-based agent under static and cyclic loading. Structures 2021, 31, 761–768. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Lukovic, M.; van Breugel, K.; Hordijk, D.; Ey, G. Development and application of an environmentally friendly ductile alkali-activated composite. J. Clean. Prod. 2018, 180, 524–538. [Google Scholar] [CrossRef]
- Liang, C.F.; Cai, Z.D.; Wu, H.X.; Xiao, J.Z.; Zhang, Y.M.; Ma, Z.M. Chloride transport and induced steel corrosion in recycled aggregate concrete: A review. Constr. Build. Mater. 2021, 282, 122547. [Google Scholar] [CrossRef]
- Kenny, A.; Katz, A. Steel-concrete interface influence on chloride threshold for corrosion—Empirical reinforcement to theory. Constr. Build. Mater. 2020, 244, 118376. [Google Scholar] [CrossRef]
- Mangat, P.S.; Ojedokun, O.O.; Lambert, P. Chloride-initiated corrosion in alkali activated reinforced concrete. Cem. Concr. Compos. 2021, 115, 103823. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Wu, M. Passivation and corrosion behavior of 2304 duplex stainless steel in alkali-activated slag materials. Cem. Concr. Compos. 2020, 108, 103532. [Google Scholar] [CrossRef]
- Ishizaki, T.; Chiba, S.; Watanabe, K.; Suzuki, H. Corrosion resistance of Mg-Al layered double hydroxide container-containing magnesium hydroxide films formed directly on magnesium alloy by chemical-free steam coating. J. Mater. Chem. A 2013, 1, 8968–8977. [Google Scholar] [CrossRef]
- Hu, Y.R.; Li, H.H.; Wang, Q.; Zhang, J.; Song, Q. Characterization of LDHs prepared with different activity MgO and resisting Cl− attack of concrete in salt lake brine. Constr. Build. Mater. 2019, 229, 116921. [Google Scholar] [CrossRef]
- Tatematsu, H.; Sasaki, T. Repair materials system for chloride-induced corrosion of reinforcing bars. Cem. Concr. Compos. 2003, 25, 123–129. [Google Scholar] [CrossRef]
- Shui, Z.H.; Ma, J.T.; Chen, W.; Chen, X.X. Chloride Binding Capacity of Cement Paste Containing Layered Double Hydroxide (LDH). J. Test. Eval. 2012, 40, 796–800. [Google Scholar] [CrossRef]
- Geng, J.; Pan, C.G.; Wang, Y.; Chen, W.; Zhu, Y.Y. Chloride binding in cement paste with calcined Mg-Al-CO3 LDH (CLDH) under different conditions. Constr. Build. Mater. 2021, 273, 121678. [Google Scholar] [CrossRef]
- Xu, J.X.; Song, Y.B.; Zhao, Y.H.; Jiang, L.H.; Mei, Y.J.; Chen, P. Chloride removal and corrosion inhibitions of nitrate, nitrite-intercalated Mg-Al layered double hydroxides on steel in saturated calcium hydroxide solution. Appl. Clay Sci. 2018, 163, 129–136. [Google Scholar] [CrossRef]
- Kayali, O.; Khan, M.S.H.; Ahmed, M.S. The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag. Cem. Concr. Compos. 2012, 34, 936–945. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.X.; Yu, Q.L.; Fan, J.F.; Brouwers, H.J.H. Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends. Constr. Build. Mater. 2020, 250, 118865. [Google Scholar] [CrossRef]
- Xu, J.X.; Wei, J.F.; Ma, G.X.; Tan, Q.P. Effect of MgAl-NO2 LDHs inhibitor on steel corrosion in chloride-free and contaminated simulated carbonated concrete pore solutions. Corros. Sci. 2020, 176, 108940. [Google Scholar] [CrossRef]
- Cao, Y.H.; Dong, S.G.; Zheng, D.J.; Wang, J.J.; Zhang, X.J.; Du, R.G.; Song, G.L.; Lin, C.J. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete. Corros. Sci. 2017, 126, 166–179. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, L.H.; Xu, J.X.; Zu, Y.H. Effect of Na2SiO3 content on passivation and corrosion behaviour of steel in a simulated pore solution of Na2SiO3-activated slag. Constr. Build. Mater. 2017, 146, 156–164. [Google Scholar] [CrossRef]
- Zuo, J.; Wu, B.; Luo, C.; Dong, B.; Xing, F. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution. Corros. Sci. 2019, 152, 120–129. [Google Scholar] [CrossRef]
- Li, J.; Luo, M.; Chen, Z.; Zhuang, E.; Yu, B.; Chen, Y.; Nong, Y. Anti-corrosion mechanism of MgAl-LDHs inhibitors with varying anionic charge on reinforcing steel in simulated concrete pore solutions. Constr. Build. Mater. 2023, 363, 129882. [Google Scholar] [CrossRef]
- Liu, A.; Tian, H.; Li, W.; Wang, W.; Gao, X.; Han, P.; Ding, R. Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance. Appl. Surf. Sci. 2018, 462, 175–186. [Google Scholar] [CrossRef]
- Xu, J.X.; Tan, Q.P.; Mei, Y.J. Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution: Effect of SO42−. Corros. Sci. 2020, 163, 108223. [Google Scholar] [CrossRef]
- Malherbe, F.; Forano, C.; Besse, J.P. Use of organic media to modify the surface and porosity properties of hydrotalcite-like compounds. Microporous Mater. 1997, 10, 67–84. [Google Scholar] [CrossRef]
- Fang, X.; Chen, C.; Jia, H.; Li, Y.N.; Liu, J.; Wang, Y.S.; Song, Y.L.; Du, T.; Liu, L.Y. Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. J. Ind. Eng. Chem. 2021, 95, 16–27. [Google Scholar] [CrossRef]
- Chubar, N.; Gilmour, R.; Gerda, V.; Micusík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.; Zaitsev, V. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability. Adv. Colloid Interface Sci. 2017, 245, 62–80. [Google Scholar] [CrossRef]
- Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Qiu, J.; Zhu, Y.K.; Yang, J.; Engelhardt, G.R.; Sagues, A. Corrosion of rebar in concrete. Part I: Calculation of the corrosion potential in the passive state. Corros. Sci. 2020, 177, 109018. [Google Scholar] [CrossRef]
- Soylev, T.A.; Richardson, M.G. Corrosion inhibitors for steel in concrete: State-of-the-art report. Constr. Build. Mater. 2008, 22, 609–622. [Google Scholar] [CrossRef]
- Li, X.J.; Gui, F.; Cong, H.B.; Brossia, C.S.; Frankel, G.S. Evaluation of Nitrate and Nitrite Reduction Kinetics Related to Liquid-Air-Interface Corrosion. Electrochim. Acta 2014, 117, 299–309. [Google Scholar] [CrossRef]
- Rivera-Corral, J.O.; Fajardo, G.; Arliguie, G.; Orozco-Cruz, R.; Deby, F.; Valdez, P. Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Constr. Build. Mater. 2017, 147, 815–826. [Google Scholar] [CrossRef]
- Mu, J.; Li, Y.Z.; Wang, X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH. Corros. Sci. 2021, 182, 109310. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Kumar, H.; Yadav, V. Musa acuminata (Green Corrosion Inhibitor) as anti-pit and anti-cracking agent for Mild Steel in 5.0 M Hydrochloric Acid Solution. Chem. Data Collect. 2020, 29, 100500. [Google Scholar] [CrossRef]
- Garces, P.; Saura, P.; Zornoza, E.; Andrade, C. Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution. Corros. Sci. 2011, 53, 3991–4000. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Ramirez, E.; Bautista, A. Protection of steel embedded in chloride-containing concrete by means of inhibitors. Cem. Concr. Res. 1998, 28, 577–589. [Google Scholar] [CrossRef]
- Bouali, A.C.; Iuzviuk, M.H.; Serdechnova, M.; Yasakau, K.A.; Wieland, D.C.F.; Dovzhenko, G.; Maltanava, H.; Zobkalo, I.A.; Ferreira, M.G.S.; Zheludkevich, M.L. Zn-Al LDH growth on AA2024 and zinc and their intercalation with chloride: Comparison of crystal structure and kinetics. Appl. Surf. Sci. 2020, 501, 144027. [Google Scholar] [CrossRef]
- Huang, Z.H.; Sun, X.Y.; Li, Y.; Ge, W.; Wang, J.D. Adsorption behaviors of chitosan and the analysis of FTIR spectra. Spectrosc. Spectr. Anal. 2005, 25, 698–700. [Google Scholar]
Materials | CaO | SiO2 | Al2O3 | SO3 | Fe2O3 | MgO | Na2O | K2O | LOI a |
---|---|---|---|---|---|---|---|---|---|
Cement | 57.27 | 24.99 | 9.32 | 0.98 | 3.11 | 0.86 | 1.06 | 1.05 | 2.06 |
Slag | 34.00 | 34.50 | 17.70 | 1.64 | 1.03 | 6.01 | 1.14 | 0.92 | 0.84 |
MAL | Solution | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
Type | Kl/(L·mmol−1) | Ws/(mg·g−1) | R2L | Kf | n | R2F | |
MAL-N3 | OPCH | 0.191 | 37.601 | 0.985 | 11.845 | 0.246 | 0.876 |
MAL-N2 | OPCH | 0.133 | 34.189 | 0.936 | 9.443 | 0.265 | 0.789 |
MAL-N3 | SH | 0.295 | 27.156 | 0.986 | 10.379 | 0.210 | 0.818 |
MAL-N2 | SH | 0.099 | 26.858 | 0.960 | 6.434 | 0.290 | 0.891 |
Immersion Time/h | Solution Type | Rs/(Ω·cm−2) | C1B/(μF·cm−2) | C1H/(μF·cm−2) | n | R1/(Ω·cm−2) | C2B/(μF·cm−2) | C2H/(μF·cm−2) | n | R2/(Ω·cm−2) | W/(Ω·cm−2) |
---|---|---|---|---|---|---|---|---|---|---|---|
24 | OPCH | 9.62 | 27.79 | 36.01 | 0.91 | 110.80 | 221.99 | 3798.00 | 0.59 | 7090 | |
24 | OPCH(MAL-N3) | 9.43 | 7.63 | 9.38 | 0.93 | 104.30 | 4.41 | 41.16 | 0.71 | 33,800 | |
24 | OPCH(MAL-N2) | 7.98 | 2.74 | 38.67 | 0.80 | 177.50 | 13.43 | 78.42 | 0.78 | 92,260 | |
48 | OPCH | 7.49 | 5.80 | 8.20 | 0.80 | 21.52 | 316.33 | 1054.89 | 0.80 | 2641 | |
48 | OPCH(MAL-N3) | 8.46 | 12.31 | 14.61 | 0.89 | 25.29 | 3.90 | 324.25 | 0.56 | 6984 | |
48 | OPCH(MAL-N2) | 11.37 | 35.56 | 52.98 | 0.92 | 1103.00 | 53.36 | 368.00 | 0.52 | 7829 | |
72 | OPCH | 12.71 | 55.09 | 138.00 | 0.79 | 387.20 | 705.00 | 2180.00 | 0.61 | 1898 | 0.015900 |
72 | OPCH(MAL-N3) | 10.52 | 32.90 | 47.57 | 0.90 | 279.50 | 300.00 | 1468.00 | 0.63 | 3844 | 0.004470 |
72 | OPCH(MAL-N2) | 9.00 | 33.31 | 48.80 | 0.92 | 719.00 | 121.00 | 126.00 | 0.66 | 8179 | 0.002621 |
24 | SH | 5.29 | 31.32 | 41.23 | 0.92 | 148.10 | 54.30 | 137.50 | 0.85 | 28,550 | |
24 | SH(MAL-N3) | 5.86 | 29.37 | 44.98 | 0.90 | 308.10 | 42.40 | 543.70 | 0.69 | 91,410 | |
24 | SH(MAL-N2) | 4.02 | 21.14 | 61.77 | 0.83 | 799.80 | 24.70 | 15.47 | 0.61 | 197,920 | |
48 | SH | 4.99 | 38.36 | 44.89 | 0.95 | 132.70 | 61.30 | 121.66 | 0.86 | 9068 | |
48 | SH(MAL-N3) | 4.73 | 37.87 | 49.78 | 0.93 | 189.60 | 47.10 | 577.50 | 0.71 | 87,750 | |
48 | SH(MAL-N2) | 5.24 | 26.26 | 52.56 | 0.87 | 566.60 | 27.80 | 726.80 | 0.64 | 182,930 | |
72 | SH | 5.40 | 48.87 | 55.67 | 0.96 | 120.9 | 65.9 | 105 | 0.89 | 5300 | 0.004975 |
72 | SH(MAL-N3) | 5.46 | 45.76 | 57.43 | 0.94 | 163.5 | 49.6 | 226.11 | 0.80 | 67,750 | |
72 | SH(MAL-N2) | 5.82 | 30.37 | 42.11 | 0.93 | 524.1 | 29.6 | 219.02 | 0.74 | 152,270 |
Solution Type | MAL | Ecorr (mV vs·SCE) | Icorr (μA·cm−2) | βc (mV·dec−1) | βa (mV·dec−1) | ƞ (%) |
---|---|---|---|---|---|---|
/ | −706 | 18.600 | 98.5 | 616.4 | / | |
OPCH | MAL-N3 | −697 | 11.100 | 91.1 | 711.5 | 40.3 |
MAL-N2 | −637 | 1.870 | 67.8 | 249.1 | 89.9 | |
/ | −601 | 3.370 | 96.1 | 419.6 | / | |
SH | MAL-N3 | −451 | 0.329 | 113.5 | 299.2 | 90.2 |
MAL-N2 | −329 | 0.169 | 124.8 | 388.2 | 94.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, M.; Xu, J.; Jiang, Y.; Wu, Y. Corrosion Protection of Steel by NO3− and NO2− Intercalated Mg-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag. Metals 2024, 14, 111. https://doi.org/10.3390/met14010111
Zhong M, Xu J, Jiang Y, Wu Y. Corrosion Protection of Steel by NO3− and NO2− Intercalated Mg-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag. Metals. 2024; 14(1):111. https://doi.org/10.3390/met14010111
Chicago/Turabian StyleZhong, Minxuan, Jinxia Xu, Yiyang Jiang, and You Wu. 2024. "Corrosion Protection of Steel by NO3− and NO2− Intercalated Mg-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag" Metals 14, no. 1: 111. https://doi.org/10.3390/met14010111
APA StyleZhong, M., Xu, J., Jiang, Y., & Wu, Y. (2024). Corrosion Protection of Steel by NO3− and NO2− Intercalated Mg-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag. Metals, 14(1), 111. https://doi.org/10.3390/met14010111