Effect of Different Post-Processing Thermal Treatments on the Fracture Toughness and Tempering Resistance of Additively Manufactured H13 Hot-Work Tool Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. AB and Quenched Microstructure
- Liquid → delta ferrite [BCC_A2].
- Liquid + delta ferrite → Austenite [FCC_A1].
- Liquid → Austenite + V(C,N) [FCCA#2].
- Liquid → Austenite + M6C.
- Liquid → Austenite + M7C3.
3.2. Tempering Curves
3.3. Tempering Resistance
3.4. Fracture Toughness
4. Discussion
5. Conclusions
- The ABT samples generally demonstrated higher hardness than QT samples tempered at the same temperature. This could be ascribed to the finer martensite substructure leading to higher strength according to the Hall–Petch relation and, at the same time, providing finer secondary carbide size distribution by increased nucleation sites, a plausibly higher volume fraction of thermally stable secondary V(C,N), and, finally, the decomposition of about 12% of the retained austenite during the tempering process.
- The enhanced softening resistance of ABT was extended up to 40 h at 650 °C. Tempering resistance strongly depends on the heat treatment schedule. Direct tempering led to improved tempering resistance due to the contribution of finer martensite substructures and a finer distribution of alloy carbides.
- The QT samples showed higher apparent fracture toughness in comparison to the ABT samples at the same reference hardness (~500 HV1). This was attributed to the more homogeneous micro-structure and the deteriorative effect of densely populated secondary carbides on the cellular/dendritic boundaries in the ABT sample. Nevertheless, the fracture toughness of the ABT samples was still acceptable and comparable to the wrought H13 after heat treatment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson, S.M.; Bian, L.; Shamsaei, N.; Yadollahi, A. An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics. Addit. Manuf. 2015, 8, 36–62. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Roberts, G.A.; Kennedy, R.; Krauss, G. Tool Steels; ASM International: Detroit, MI, USA, 1998; ISBN 1-61503-201-0. [Google Scholar]
- Klobčar, D.; Tušek, J.; Taljat, B. Thermal Fatigue of Materials for Die-Casting Tooling. Mater. Sci. Eng. A 2008, 472, 198–207. [Google Scholar] [CrossRef]
- Sjöström, J.; Bergström, J. Thermal Fatigue Testing of Chromium Martensitic Hot-Work Tool Steel after Different Austenitizing Treatments. J. Mater. Process. Technol. 2004, 153–154, 1089–1096. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in Additive Manufacturing: A Review of Their Microstructure and Properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Joshi, S.S.; Sharma, S.; Mazumder, S.; Pantawane, M.V.; Dahotre, N.B. Solidification and Microstructure Evolution in Additively Manufactured H13 Steel via Directed Energy Deposition: Integrated Experimental and Computational Approach. J. Manuf. Process. 2021, 68, 852–866. [Google Scholar] [CrossRef]
- Park, J.S.; Park, J.H.; Lee, M.-G.; Sung, J.H.; Cha, K.J.; Kim, D.H. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process. Metall. Mater. Trans. A 2016, 47, 2529–2535. [Google Scholar] [CrossRef]
- Craig, O.; Bois-Brochu, A.; Plucknett, K. Geometry and Surface Characteristics of H13 Hot-Work Tool Steel Manufactured Using Laser-Directed Energy Deposition. Int. J. Adv. Manuf. Technol. 2021, 116, 699–718. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, M.-G.; Cho, Y.-J.; Sung, J.H.; Jeong, M.-S.; Lee, S.-K.; Choi, Y.-J.; Kim, D.H. Effect of Heat Treatment on the Characteristics of Tool Steel Deposited by the Directed Energy Deposition Process. Met. Mater. Int. 2016, 22, 143–147. [Google Scholar] [CrossRef]
- Amirabdollahian, S.; Deirmina, F.; Pellizzari, M.; Bosetti, P.; Molinari, A. Tempering Behavior of a Direct Laser Deposited Hot Work Tool Steel: Influence of Quenching on Secondary Hardening and Microstructure. Mater. Sci. Eng. A 2021, 814, 141126. [Google Scholar] [CrossRef]
- Deirmina, F.; Peghini, N.; AlMangour, B.; Grzesiak, D.; Pellizzari, M. Heat Treatment and Properties of a Hot Work Tool Steel Fabricated by Additive Manufacturing. Mater. Sci. Eng. A 2019, 753, 109–121. [Google Scholar] [CrossRef]
- Krell, J.; Röttger, A.; Geenen, K.; Theisen, W. General Investigations on Processing Tool Steel X40CrMoV5-1 with Selective Laser Melting. J. Mater. Process. Technol. 2018, 255, 679–688. [Google Scholar] [CrossRef]
- Yuan, M.; Cao, Y.; Karamchedu, S.; Hosseini, S.; Yao, Y.; Berglund, J.; Liu, L.; Nyborg, L. Characteristics of a Modified H13 Hot-Work Tool Steel Fabricated by Means of Laser Beam Powder Bed Fusion. Mater. Sci. Eng. A 2022, 831, 142322. [Google Scholar] [CrossRef]
- Pellizzari, M.; Furlani, S.; Deirmina, F.; Siriki, R.; AlMangour, B.; Grzesiak, D. Fracture Toughness of a Hot Work Tool Steel Fabricated by Laser-Powder Bed Fusion Additive Manufacturing. Steel Res. Int. 2020, 91, 1900449. [Google Scholar] [CrossRef]
- Fonseca, E.B.; Gabriel, A.H.G.; Ávila, J.A.; Vaz, R.F.; Valim, D.B.; Cano, I.G.; Lopes, É.S.N. Fracture Toughness and Wear Resistance of Heat-Treated H13 Tool Steel Processed by Laser Powder Bed Fusion. Addit. Manuf. 2023, 78, 103862. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- ASTM B962; Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. SIS: London, UK, 2008.
- Lee, B.-W.; Jang, J.; Kwon, D. Evaluation of Fracture Toughness Using Small Notched Specimens. Mater. Sci. Eng. A 2002, 334, 207–214. [Google Scholar] [CrossRef]
- König, H.-H.; Pettersson, N.H.; Durga, A.; Van Petegem, S.; Grolimund, D.; Chuang, A.C.; Guo, Q.; Chen, L.; Oikonomou, C.; Zhang, F.; et al. Solidification Modes during Additive Manufacturing of Steel Revealed by High-Speed X-ray Diffraction. Acta Mater. 2023, 246, 118713. [Google Scholar] [CrossRef]
- Omar, S.M.T.; Plucknett, K.P. The Influence of DED Process Parameters and Heat-Treatment Cycle on the Microstructure and Hardness of AISI D2 Tool Steel. J. Manuf. Process. 2022, 81, 655–671. [Google Scholar] [CrossRef]
- Chou, C.-Y.; Pettersson, N.H.; Durga, A.; Zhang, F.; Oikonomou, C.; Borgenstam, A.; Odqvist, J.; Lindwall, G. Influence of Solidification Structure on Austenite to Martensite Transformation in Additively Manufactured Hot-Work Tool Steels. Acta Mater. 2021, 215, 117044. [Google Scholar] [CrossRef]
- Ning, A.; Yue, S.; Gao, R.; Li, L.; Guo, H. Influence of Tempering Time on the Behavior of Large Carbides’ Coarsening in AISI H13 Steel. Metals 2019, 9, 1283. [Google Scholar] [CrossRef]
- Carasi, G.; Yu, B.; Hutten, E.; Zurob, H.; Casati, R.; Vedani, M. Effect of Heat Treatment on Microstructure Evolution of X38CrMoV5-1 Hot-Work Tool Steel Produced by L-PBF. Metall. Mater. Trans. A 2021, 52, 2564–2575. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, X.; Shi, N.; Li, J.; Min, N. Microstructure Evolution and Kinetic Analysis of DM Hot-Work Die Steels during Tempering. Mater. Sci. Eng. A 2011, 528, 5696–5700. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The Morphology and Crystallography of Lath Martensite in Fe-C Alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Morito, S.; Iwami, Y.; Koyano, T.; Ohba, T. Effect of Solution Carbon and Nitrogen on the Microstructural Size and Crystallography of Lath Martensite in Fe–N and Fe–C Alloys. Mater. Trans. 2016, 57, 227–232. [Google Scholar] [CrossRef]
- Morito, S.; Yoshida, H.; Maki, T.; Huang, X. Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels. Mater. Sci. Eng. A 2006, 438–440, 237–240. [Google Scholar] [CrossRef]
- Pellizzari, M.; Fedrizzi, A.; Zadra, M. Influence of Processing Parameters and Particle Size on the Properties of Hot Work and High Speed Tool Steels by Spark Plasma Sintering. Mater. Des. 2011, 32, 1796–1805. [Google Scholar] [CrossRef]
- Yuxin, T.; Minghe, L.; Haiyan, C.; Guanghong, Y.; Zhou, X. Effects of Quenching Temperature on Microstructure and Mechanical Properties of H13 Mandrel Steel. Baosteel Tech. Res. 2010, 4, 58–64. [Google Scholar]
- Leskovšek, V. Correlation between the KIc, the HRc and the Charpy V-Notch Test Results for H11/H13 Hot-Work Tool Steels at Room Temperature. Steel Res. Int. 2008, 79, 306–313. [Google Scholar] [CrossRef]
- Davis, J.R. ASM Specialty Handbook: Tool Materials; ASM International: Detroit, MI, USA, 1995; ISBN 0-87170-545-1. [Google Scholar]
- Maim, S.; Norström, L.-Å. Material-Related Model for Thermal Fatigue Applied to Tool Steels in Hot-Work Applications. Met. Sci. 1979, 13, 544–550. [Google Scholar] [CrossRef]
- Hansson, P. Modern Prehardened Tool Steels in Die-Casting Applications. Mater. Manuf. Process. 2009, 24, 824–827. [Google Scholar] [CrossRef]
- Berns, H.; Wendl, F. Effect of Carbon Content in CrMoV Hot Working Tool Steel. Steel Res. 1986, 57, 671–676. [Google Scholar] [CrossRef]
- Persson, A.; Hogmark, S.; Bergström, J. Temperature Profiles and Conditions for Thermal Fatigue Cracking in Brass Die Casting Dies. J. Mater. Process. Technol. 2004, 152, 228–236. [Google Scholar] [CrossRef]
- Pellizzari, M.; Massignani, D.; Amirabdollahian, S.; Deirmina, F. Thermal Fatigue Behavior of AISI H13 Hot Work Tool Steel Produced by Direct Laser Metal Deposition. Steel Res. Int. 2023, 94, 2200449. [Google Scholar] [CrossRef]
Element | C | Cr | Mo | Mn | Si | V | N | Fe |
---|---|---|---|---|---|---|---|---|
0.40 | 5.10 | 1.58 | 0.30 | 0.95 | 1.10 | 0.04 | Bal. |
Element | AB V(C,N) Stringers | AB (M6C) | AB (M7C3) | Quenched V(C,N) Stringers | Quenched V(C,N) Globular |
---|---|---|---|---|---|
C (at.%) | 39.7 | 26.8 | 23.3 | 24.7 | 22.0 |
N (wt.%) | 4.4 | - | - | 5.0 | 1.3 |
Si (wt.%) | 0.6 | 1.3 | - | 1.0 | 0.7 |
Mn (wt.%) | - | 2.5 | - | - | - |
V (wt.%) | 44.0 | 2.2 | 5.5 | 23.1 | 11.2 |
Cr (wt.%) | 10.5 | 10.8 | 25.5 | 8.3 | 5.6 |
Mo (wt.%) | 7.7 | 34.5 | 8.8 | 4.3 | 2.7 |
Sample | HV10 | Kapp (MPa√m) |
---|---|---|
AM (L-DED H13-ABT) | 495 ± 5 | 70 ± 1.8 |
AM (L-DED H13-QT) | 491 ± 4 | 89 ± 3.8 |
AM (L-PBF H13-ABT) [15] | 460 ± 5 | 67.5 ± 2.8 |
AM (L-PBF H13-QT) [15] | 420 ± 1 | 75 ± 1.0 |
AM (L-PBF H13-QT) [16] | ~550 | * KQ = 36 |
AM (L-PBF H13-QT) [16] | ~400 | * KQ = 84 |
HIP H13-QT [29] | 450 ± 10 | * KIC = 66 |
Wrought H13-QT [30] | ~530 | * KIC = 35–40 |
Wrought H13-QT [31] | ~470 | * KIC = 55–60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deirmina, F.; Amirabdollahian, S.; Pellizzari, M.; Molinari, A. Effect of Different Post-Processing Thermal Treatments on the Fracture Toughness and Tempering Resistance of Additively Manufactured H13 Hot-Work Tool Steel. Metals 2024, 14, 112. https://doi.org/10.3390/met14010112
Deirmina F, Amirabdollahian S, Pellizzari M, Molinari A. Effect of Different Post-Processing Thermal Treatments on the Fracture Toughness and Tempering Resistance of Additively Manufactured H13 Hot-Work Tool Steel. Metals. 2024; 14(1):112. https://doi.org/10.3390/met14010112
Chicago/Turabian StyleDeirmina, Faraz, Sasan Amirabdollahian, Massimo Pellizzari, and Alberto Molinari. 2024. "Effect of Different Post-Processing Thermal Treatments on the Fracture Toughness and Tempering Resistance of Additively Manufactured H13 Hot-Work Tool Steel" Metals 14, no. 1: 112. https://doi.org/10.3390/met14010112
APA StyleDeirmina, F., Amirabdollahian, S., Pellizzari, M., & Molinari, A. (2024). Effect of Different Post-Processing Thermal Treatments on the Fracture Toughness and Tempering Resistance of Additively Manufactured H13 Hot-Work Tool Steel. Metals, 14(1), 112. https://doi.org/10.3390/met14010112