Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Characterization and Phase Identification
3.2. Stress–Strain Curves
3.3. Establishment of the Deformation Constitutive Model
3.4. The Relationship between the Deformation Energy Storage and Z Parameter
3.5. Hot Working Map
4. Conclusions
- Both the strain rate and the deformation temperature have a significant effect on the flow curve of the Fe40Mn20Cr20Ni20 MEA. The flow stress decreased with increasing deformation temperature and decreasing strain rate.
- The analytical relationship between the high-temperature tensile peak stress of Fe40Mn20Cr20Ni20 MEA and the Z parameter was obtained using the hyperbolic sine model.
- The relationship between the deformation energy storage and Z parameter was identified:
- The hot working diagram of Fe40Mn20Cr20Ni20 MEA mainly has two flow instability regions and a thermal processing safe region. The instability zones range from 620 to 700 K and 787 to 873 K, and the strain rate regions are 2 × 10−3–4 × 10−3 s−1 and 2 × 10−3–2.73 × 10−2 s−1.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mat. Sci. Eng. A-Struct. 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, R.W.; Xiao, B.; Zhang, Z.R.; Li, S.; Qiao, J.W.; Bai, S.X.; Zhang, Y.; Liaw, P.K. A Review on the Dynamic-Mechanical Behaviors of High-Entropy Alloys. Prog. Mater. Sci. 2023, 135, 101090. [Google Scholar] [CrossRef]
- Qiao, J.W.; Ma, S.G.; Huang, E.W.; Chuang, C.P.; Liaw, P.K.; Zhang, Y.C. Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures. Mater. Sci. Forum 2011, 688, 419–425. [Google Scholar] [CrossRef]
- Nutor, R.K.; Cao, Q.; Wei, R.; Su, Q.; Du, G.; Wang, X.; Li, F.; Zhang, D.; Jiang, J.-Z. A Dual-Phase Alloy with Ultrahigh Strength-Ductility Synergy over a Wide Temperature Range. Sci. Adv. 2021, 7, eabi4404. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Fu, H.; Qian, L.; Cheung, C.F.; Yang, X.-S. Significant Annealing-Induced Hardening Effect in Nanolaminated-Nanotwinned (CrCoNi)97.4Al0.8Ti1.8 Medium-Entropy Alloy by Severe Cold Rolling. J. Mater. Sci. Technol. 2024, 170, 156–166. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Y.; Liu, Q.; Shang, X. Nanoparticle-Strengthened Ni2CoCrNb0.2 Medium-Entropy Alloy with an Ultrastrong Cryogenic Yield Strength Fabricated by Additive Manufacturing. J. Mater. Sci. Technol. 2023, 163, 17–31. [Google Scholar] [CrossRef]
- Yuan, J.L.; Wang, Z.; Jin, X.; Han, P.D.; Qiao, J.W. Ultra-High Strength Assisted by Nano-Precipitates in a Heterostructural High-Entropy Alloy. J. Alloys Compd. 2022, 921, 166106. [Google Scholar] [CrossRef]
- Zhang, X.; Pelenovich, V.; Zeng, X.; Wan, Q.; Liu, J.; Pogrebnjak, A.; Guo, Y.; Liu, Y.; Lei, Y.; Yang, B. Unravel Hardening Mechanism of AlCrNbSiTi High-Entropy Alloy Coatings. J. Alloys Compd. 2023, 965, 171222. [Google Scholar] [CrossRef]
- Rymer, L.-M.; Lindner, T.; Lampke, T. Enhanced High-Temperature Wear Behavior of High-Speed Laser Metal Deposited Al0.3CrFeCoNi Coatings Alloyed with Nb and Mo. Surf. Coat. Technol. 2023, 470, 129832. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, J.; Ye, S.; Yang, K.; Li, M.; Wang, H.; He, J. High-Entropy Rare Earth Titanates with Low Thermal Conductivity Designed by Lattice Distortion. J. Am. Ceram. Soc. 2023, 106, 6279–6291. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Stepanov, N.; Ivanisenko, Y.; Shaysultanov, D.; Yurchenko, N.; Klimova, M.; Salishchev, G. Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures. Metals 2018, 8, 123. [Google Scholar] [CrossRef]
- Yao, M.J.; Pradeep, K.G.; Tasan, C.C.; Raabe, D. A Novel, Single Phase, Non-Equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility. Scr. Mater. 2014, 72–73, 5–8. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.; Wang, T.; Wen, B.; Wang, Z.; Jie, J.; Cao, Z.; et al. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Yeh, J.W.; Chen, S.K.; Shun, T.T. Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy with Boron Addition. Metall. Mater. Trans. A 2004, 35, 1465–1469. [Google Scholar] [CrossRef]
- Nayan, N.; Singh, G.; Narayana Murty, S.V.S.; Jha, A.K.; Pant, B.; George, K.M. High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-Component (Ni-Ti-Cu-Fe) Alloy. Metall. Mater. Trans. A 2015, 46, 2201–2215. [Google Scholar] [CrossRef]
- Eleti, R.R.; Bhattacharjee, T.; Zhao, L.; Bhattacharjee, P.P.; Tsuji, N. Hot Deformation Behavior of CoCrFeMnNi FCC High Entropy Alloy. Mater. Chem. Phys. 2018, 210, 176–186. [Google Scholar] [CrossRef]
- Tong, Y.; Qiao, J.C.; Yao, Y. The Constitutive Model and Threshold Stress for Characterizing the Deformation Mechanism of Al0.3CoCrFeNi High Entropy Alloy. Mat. Sci. Eng. A-Struct. 2018, 730, 137–146. [Google Scholar] [CrossRef]
- Samal, S.; Rahul, M.R.; Kottada, R.S.; Phanikumar, G. Hot Deformation Behaviour and Processing Map of Co-Cu-Fe-Ni-Ti Eutectic High Entropy Alloy. Mat. Sci. Eng. A-Struct. 2016, 664, 227–235. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. Eng. Fract. Mech. 1983, 21, 541–548. [Google Scholar]
- Pawelski, O.; Gopinathan, V. Comparison of Material Flow and Deformation Resistance of HSLA Steel Deformed by Hot Rolling and by Flat Compression under Simulated Conditions. J. Mech. Work. Technol. 1981, 5, 267–280. [Google Scholar] [CrossRef]
- Khan, A.S.; Liang, R. Behaviors of Three BCC Metal over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling. Int. J. Plast. 1999, 15, 1089–1109. [Google Scholar] [CrossRef]
- Takuda, H.; Fujimoto, H.; Hatta, N. Modelling on Flow Stress of Mg–Al–Zn Alloys at Elevated Temperatures. J. Mater. Process Technol. 1998, 80–81, 513–516. [Google Scholar] [CrossRef]
- Kumar, P.; Rahul, M.R.; Samal, S.; Ghosh, A.; Phanikumar, G. Constitutive Behavior with Microstructure and Texture Evolution During the High-Temperature Deformation of Fe11.5Co20.6Ni40.7Cr12.2Al7.8Ti7.2 High-Entropy Alloy. Metall. Mater. Trans. A 2023, 54, 3249–3260. [Google Scholar] [CrossRef]
- He, H.T.; Fang, J.X.; Wang, J.X.; Sun, T.; Yang, Z.; Ma, B.; Chen, H.T.; Wen, M. Carbide-Reinforced Re0.1Hf0.25NbTaW0.4 Refractory High-Entropy Alloy with Excellent Room and Elevated Temperature Mechanical Properties. Int. J. Refract. Met. Hard Mater. 2023, 116, 106349. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Jiao, Z.M.; Bian, G.B.; Yang, H.J.; He, H.W.; Wang, Z.H.; Liaw, P.K.; Qiao, J.W. Dynamic Tension and Constitutive Model in Fe40Mn20Cr20Ni20 High-Entropy Alloys with a Heterogeneous Structure. Mat. Sci. Eng. A-Struct. 2022, 839, 142837. [Google Scholar] [CrossRef]
- Ma, Q.X.; Yang, H.; Wang, Z.; Shi, X.H.; Liaw, P.K.; Qiao, J.W. High Strength and Ductility in Partially Recrystallized Fe40Mn20Cr20Ni20 High-Entropy Alloys at Cryogenic Temperature. Microstructures 2022, 2, 2022015. [Google Scholar] [CrossRef]
- Guo, Q.; Hou, H.; Pan, Y.; Pei, X.; Song, Z.; Liaw, P.K.; Zhao, Y. Hardening-Softening of Al0.3CoCrFeNi High-Entropy Alloy under Nanoindentation. Mater. Des. 2023, 231, 112050. [Google Scholar] [CrossRef]
- Bruni, C.; Forcellese, A.; Gabrielli, F. Hot Workability and Models for Flow Stress of NIMONIC 115 Ni-Base Superalloy. J. Mater. Process Technol. 2002, 125–126, 242–247. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, M.S.; Zhang, J. Modeling of Flow Stress of 42CrMo Steel under Hot Compression. Mat. Sci. Eng. A-Struct. 2009, 499, 88–92. [Google Scholar] [CrossRef]
- Airod, A.; Vandekinderen, H.; Barros, J.; Colás, R.; Houbaert, Y. Constitutive Equations for the Room Temperature Deformation of Commercial Purity Aluminum. J. Mater. Process Technol. 2003, 134, 398–404. [Google Scholar] [CrossRef]
- Wright, R.N.; Paulson, M.S. Constitutive Equation Development for High Strain Deformation Processing of Aluminum Alloys. J. Mater. Process Technol. 1998, 80–81, 556–559. [Google Scholar] [CrossRef]
- Jonas, J.J.; Sellars, C.M.; Tegart, W.J.M. Strength and Structure under Hot-Working Conditions. Metall. Rev. 1969, 14, 1–24. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, H.; Han, Y.; Wu, W.; Chen, J. Hot Deformation Behavior of 7150 Aluminum Alloy during Compression at Elevated Temperature. Mater. Charact. 2009, 60, 530–536. [Google Scholar] [CrossRef]
- McQueen, H.J.; Yue, S.; Ryan, N.D.; Fry, E. Hot Working Characteristics of Steels in Austenitic State. J. Mater. Process Technol. 1995, 53, 293–310. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P.; Sasidhara, S. Hot Working Guide: A Compendium of Processing Maps, 2nd ed.; ASM International: Materials Park, OH, USA, 2015; pp. 1–30. [Google Scholar]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Modelling of Hot Deformation for Microstructural Control. Int. Mater. Rev. 1998, 43, 243–258. [Google Scholar] [CrossRef]
- Srinivasan, N.; Prasad, Y.V.R.K.; Rama Rao, P. Hot Deformation Behaviour of Mg–3Al Alloy—A Study Using Processing Map. Mat. Sci. Eng. A-Struct. 2008, 476, 146–156. [Google Scholar] [CrossRef]
- Bozzini, B.; Cerri, E. Numerical Reliability of Hot Working Processing Maps. Mat. Sci. Eng. A-Struct. 2002, 328, 344–347. [Google Scholar] [CrossRef]
Deformation Conditions | 573 K | 673 K | 773 K | 873 K |
---|---|---|---|---|
1 × 10−3 | 700.23 | 580.21 | 505.38 | 300.35 |
1 × 10−2 | 750.32 | 610.38 | 600.20 | 310.38 |
5 × 10−2 | 810.83 | 710.27 | 690.60 | 350.30 |
1 × 10−1 | 900.42 | 820.32 | 720.92 | 420.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ma, Q.; Mao, Z.; He, X.; Zhao, L.; Che, H.; Qiao, J. Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy. Metals 2024, 14, 32. https://doi.org/10.3390/met14010032
Wang Z, Ma Q, Mao Z, He X, Zhao L, Che H, Qiao J. Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy. Metals. 2024; 14(1):32. https://doi.org/10.3390/met14010032
Chicago/Turabian StyleWang, Zhen, Qixin Ma, Zhouzhu Mao, Xikou He, Lei Zhao, Hongyan Che, and Junwei Qiao. 2024. "Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy" Metals 14, no. 1: 32. https://doi.org/10.3390/met14010032
APA StyleWang, Z., Ma, Q., Mao, Z., He, X., Zhao, L., Che, H., & Qiao, J. (2024). Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy. Metals, 14(1), 32. https://doi.org/10.3390/met14010032