High-Temperature Oxidation and Microstructural Changes of Al0.75CoCrFeNi High-Entropy Alloy at 900 and 1100 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Empirical Approach Using Hume Rothery Law
3.2. As-Homogenized Alloy
3.3. Oxidation Behavior
3.3.1. Surface Oxides from XRD Results
3.3.2. Cross-Section Analysis
3.4. Oxidation Mechanism
3.5. Oxidation Kinetics
3.6. Microstructural Evolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turchi, A.; Bianchi, D.; Nasuti, F.; Onofri, M. A Numerical Approach for the Study of the Gas–Surface Interaction in Carbon–Phenolic Solid Rocket Nozzles. Aerosp. Sci. Technol. 2013, 27, 25–31. [Google Scholar] [CrossRef]
- Katsarelis, C.; Chen, P.; Gradl, P.; Protz, C.; Jones, Z.; Ellis, D.; Evans, L. Additive Manufacturing of NASA HR-1 Material for Liquid Rocket Engine Component Applications. In Proceedings of the JANNAF Dec 2019; Tampa, FL, USA, 9–13 December 2019. Available online: https://ntrs.nasa.gov/search.jsp?R=20200001007 (accessed on 31 May 2023).
- Shahwaz, M.; Nath, P.; Sen, I. A Critical Review on the Microstructure and Mechanical Properties Correlation of Additively Manufactured Nickel-Based Superalloys. J. Alloys Compd. 2022, 907, 164530. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, X.; Yue, L.; Zhang, Z. A Review of Composition Evolution in Ni-Based Single Crystal Superalloys. J. Mater. Sci. Technol. 2020, 44, 76–95. [Google Scholar] [CrossRef]
- Heilmaier, M.; Krüger, M.; Saage, H.; Rösler, J.; Mukherji, D.; Glatzel, U.; Völkl, R.; Hüttner, R.; Eggeler, G.; Somsen, C.; et al. Metallic Materials for Structural Applications beyond Nickel-Based Superalloys. JOM 2009, 61, 61–67. [Google Scholar] [CrossRef]
- Yeh, A.-C.; Tsao, T.K.; Chang, Y.J.; Chang, K.C.; Yeh, J.-W.; Chiou, M.-S.; Jian, S.-R.; Kuo, C.-M.; Wang, W.R.; Murakami, H. Developing New Type of High Temperature Alloys–High Entropy Superalloys. Metall. Mater. Eng. 2015, 2015, 1–4. [Google Scholar]
- Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef]
- Butler, T.M.; Pavel, M.J.; Weaver, M.L. The Effect of Annealing on the Microstructures and Oxidation Behaviors of AlCoCrFeNi Complex Concentrated Alloys. J. Alloys Compd. 2023, 956, 170391. [Google Scholar] [CrossRef]
- Murty, B.S. High-Entropy Alloys; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Tokarewicz, M.; Grądzka-Dahlke, M. Review of Recent Research on AlCoCrFeNi High-Entropy Alloy. Metals 2021, 11, 1302. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Z.; Xian, J.; Gao, X.; Lin, D.; Song, H. Structural and Thermodynamic Properties of the High-Entropy Alloy AlCoCrFeNi Based on First-Principles Calculations. Front. Mater. 2020, 7, 590143. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. High Entropy Alloys. Mater. Sci. Technol. 2015, 31, 1139–1141. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Jayaraj, J.; Thirathipviwat, P.; Han, J.; Gebert, A. Microstructure, Mechanical and Thermal Oxidation Behavior of AlNbTiZr High Entropy Alloy. Intermetallics 2018, 100, 9–19. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yin, X.L.; Dong, Y.; Lu, Y.P.; Jiang, L.; Wang, T.M.; Li, T.J. Corrosion Properties of AlxCoCrFeNiTi0·5 High Entropy Alloys in 0·5M H2SO4 Aqueous Solution. Mater. Res. Innov. 2014, 18 (Suppl. S4), S4-756–S4-760. [Google Scholar] [CrossRef]
- Lu, C.; Yang, T.; Jin, K.; Gao, N.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Weber, W.J.; Sun, K.; et al. Radiation-Induced Segregation on Defect Clusters in Single-Phase Concentrated Solid-Solution Alloys. Acta Mater. 2017, 127, 98–107. [Google Scholar] [CrossRef]
- Yang, T.; Xia, S.; Guo, W.; Hu, R.; Poplawsky, J.D.; Sha, G.; Fang, Y.; Yan, Z.; Wang, C.; Li, C.; et al. Effects of Temperature on the Irradiation Responses of Al0.1CoCrFeNi High Entropy Alloy. Scr. Mater. 2018, 144, 31–35. [Google Scholar] [CrossRef]
- Vaidya, M.; Pradeep, K.G.; Murty, B.S.; Wilde, G.; Divinski, S.V. Bulk Tracer Diffusion in CoCrFeNi and CoCrFeMnNi High Entropy Alloys. Acta Mater. 2018, 146, 211–224. [Google Scholar] [CrossRef]
- Vaidya, M.; Trubel, S.; Murty, B.S.; Wilde, G.; Divinski, S.V. Ni Tracer Diffusion in CoCrFeNi and CoCrFeMnNi High Entropy Alloys. J. Alloys Compd. 2016, 688, 994–1001. [Google Scholar] [CrossRef]
- Stryzhyboroda, O.; Witusiewicz, V.T.; Gein, S.; Röhrens, D.; Hecht, U. Phase Equilibria in the Al–Co–Cr–Fe–Ni High Entropy Alloy System: Thermodynamic Description and Experimental Study. Front. Mater. 2020, 7, 270. [Google Scholar] [CrossRef]
- Jones, N.G.; Izzo, R.; Mignanelli, P.M.; Christofidou, K.A.; Stone, H.J. Phase Evolution in an Al0.5CrFeCoNiCu High Entropy Alloy. Intermetallics 2016, 71, 43–50. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Xia, S.; Wang, Z.; Yang, T.; Zhang, Y. Irradiation Behavior in High Entropy Alloys. J. Iron Steel Res. Int. 2015, 22, 879–884. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J. Anomalous Decrease in X-Ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-Principal Elements. Mater. Chem. Phys. 2007, 103, 41–46. [Google Scholar] [CrossRef]
- Esmaily, M.; Qiu, Y.; Bigdeli, S.; Venkataraman, M.B.; Allanore, A.; Birbilis, N. High-Temperature Oxidation Behaviour of AlxFeCrCoNi and AlTiVCr Compositionally Complex Alloys. NPJ Mater. Degrad. 2020, 4, 25. [Google Scholar] [CrossRef]
- Listyawan, T.A.; Agustianingrum, M.P.; Na, Y.S.; Lim, K.R.; Park, N. Improving High-Temperature Oxidation Behavior by Modifying Al and Co Content in Al–Co–Cr–Fe–Ni High-Entropy Alloy. J. Mater. Sci. Technol. 2022, 129, 115–126. [Google Scholar] [CrossRef]
- Veselkov, S.; Samoilova, O.; Shaburova, N.; Trofimov, E. High-Temperature Oxidation of High-Entropic Alloys: A Review. Materials 2021, 14, 2595. [Google Scholar] [CrossRef]
- Lu, J.; Ren, G.; Chen, Y.; Zhang, H.; Li, L.; Huang, A.; Liu, X.; Cai, H.; Shan, X.; Luo, L.; et al. Unraveling the Oxidation Mechanism of an AlCoCrFeNi High-Entropy Alloy at 1100 °C. Corros. Sci. 2022, 209, 110736. [Google Scholar] [CrossRef]
- Butler, T.M.; Weaver, M.L. Oxidation Behavior of Arc Melted AlCoCrFeNi Multi-Component High-Entropy Alloys. J. Alloys Compd. 2016, 674, 229–244. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- He, M.-R.; Wang, S.; Shi, S.; Jin, K.; Bei, H.; Yasuda, K.; Matsumura, S.; Higashida, K.; Robertson, I.M. Mechanisms of Radiation-Induced Segregation in CrFeCoNi-Based Single-Phase Concentrated Solid Solution Alloys. Acta Mater. 2017, 126, 182–193. [Google Scholar] [CrossRef]
- Pickering, E.J.; Muñoz-Moreno, R.; Stone, H.J.; Jones, N.G. Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi. Scr. Mater. 2016, 113, 106–109. [Google Scholar] [CrossRef]
- Guo, X.; Yu, J.; Hou, Y.; Zhang, Y.; Wang, J.; Li, X.; Liao, H.; Ren, Z. Manganese Removal from Liquid Nickel by Hydrogen Plasma Arc Melting. Materials 2019, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys. J. Appl. Phys. 2011, 109. [Google Scholar] [CrossRef]
- Wu, J.-M.; Lin, S.-J.; Yeh, J.-W.; Chen, S.-K.; Huang, Y.-S.; Chen, H.-C. Adhesive Wear Behavior of AlxCoCrCuFeNi High-Entropy Alloys as a Function of Aluminum Content. Wear 2006, 261, 513–519. [Google Scholar] [CrossRef]
- Bernhard, M.; Fuchs, N.; Presoly, P.; Angerer, P.; Friessnegger, B.; Bernhard, C. Characterization of the γ-Loop in the Fe-P System by Coupling DSC and HT-LSCM with Complementary in-Situ Experimental Techniques. Mater. Charact. 2021, 174, 111030. [Google Scholar] [CrossRef]
- Egami, T. Atomic Level Stresses. Prog. Mater. Sci. 2011, 56, 637–653. [Google Scholar] [CrossRef]
- Ramunni, V.P.; Rivas, A.M.F. Diffusion Behavior of Cr Diluted in Bcc and Fcc Fe: Classical and Quantum Simulation Methods. Mater. Chem. Phys. 2015, 162, 659–670. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Wu, W. Overview of Intermetallic Sigma Phase Precipitation in Stainless Steels. ISRN Met. 2012, 2012, 732471. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, M.; Liu, N.; Liu, L.X. The Formation of Sigma Phase in the CoCrFeNi High-Entropy Alloys. Mater. Res. Express 2021, 8, 076514. [Google Scholar] [CrossRef]
- Wang, W.-R.; Wang, W.-L.; Yeh, J.-W. Phases, Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys at Elevated Temperatures. J. Alloys Compd. 2014, 589, 143–152. [Google Scholar] [CrossRef]
- de Jeer, L.T.H.; Ocelík, V.; De Hosson, J.T.M. Orientation Relationships in Al0.7CoCrFeNi High-Entropy Alloy. Microsc. Microanal. 2017, 23, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Hecht, U.; Gein, S.; Stryzhyboroda, O.; Eshed, E.; Osovski, S. The BCC-FCC Phase Transformation Pathways and Crystal Orientation Relationships in Dual Phase Materials from Al-(Co)-Cr-Fe-Ni Alloys. Front. Mater. 2020, 7, 287. [Google Scholar] [CrossRef]
- Gwalani, B.; Wang, T.; Jagetia, A.; Gangireddy, S.; Muskeri, S.; Mukherjee, S.; Lloyd, J.T.; Banerjee, R.; Mishra, R.S. Dynamic Shear Deformation of a Precipitation Hardened Al0.7CoCrFeNi Eutectic High-Entropy Alloy Using Hat-Shaped Specimen Geometry. Entropy 2020, 22, 431. [Google Scholar] [CrossRef] [PubMed]
- Abuzaid, W.; Sehitoglu, H. Plastic Strain Partitioning in Dual Phase Al13CoCrFeNi High Entropy Alloy. Mater. Sci. Eng. A 2018, 720, 238–247. [Google Scholar] [CrossRef]
- Asabre, A.; Gemagami, P.; Parsa, A.B.; Wagner, C.; Kostka, A.; Laplanche, G. Influence of Mo/Cr Ratio on the Lamellar Microstructure and Mechanical Properties of as-Cast Al0.75CoCrFeNi Compositionally Complex Alloys. J. Alloys Compd. 2022, 899, 163183. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; Li, F.; Wang, L.; Wang, Z.; Wang, Z.; Sha, Y.; Shen, Q. Effect of Annealing Treatment on the Microstructure and Hardness of AlxCoCrFeNi (x = 0.75, 1.25) High Entropy Alloys. J. Mater. Eng. Perform. 2022, 31, 1444–1455. [Google Scholar] [CrossRef]
- Benz, M.G. Preparation of Clean Superalloys. In Impurities in Engineering Materials: Impact, Reliability, and Control; Briant, C., Ed.; Routledge: New York, NY, USA, 2017; pp. 31–48. [Google Scholar] [CrossRef]
- Mohanty, A.; Sampreeth, J.K.; Bembalge, O.; Hascoet, J.Y.; Marya, S.; Immanuel, R.J.; Panigrahi, S.K. High Temperature Oxidation Study of Direct Laser Deposited AlXCoCrFeNi (X = 0.3,0.7) High Entropy Alloys. Surf. Coat. Technol. 2019, 380, 125028. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Yan, S.; Yu, G.; Chen, J.; Yin, F. High Temperature Oxidation Behavior of Atmosphere Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings. Mater. Chem. Phys. 2022, 282, 125939. [Google Scholar] [CrossRef]
- Gleeson, B. High-Temperature Corrosion of Metallic Alloys and Coatings. In Materials Science and Technology: A Comprehensive Treatment; Wiley: Hoboken, NJ, USA, 2000; pp. 173–228. [Google Scholar] [CrossRef]
- Hu, J.; Gu, C.; Li, J.; Li, C.; Feng, J.; Jiang, Y. Microstructure and Oxidation Behavior of the Y/Ta/Hf Co-Doped AlCoCrFeNi High-Entropy Alloys in Air at 1100 °C. Corros. Sci. 2023, 212, 110930. [Google Scholar] [CrossRef]
- Doychak, J.; Smialek, J.L.; Mitchell, T.E. Transient Oxidation of Single-Crystal β-NiAl. Met. Trans. A 1989, 20, 499–518. [Google Scholar] [CrossRef]
- Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Y.; Zhang, H.; Ni, N.; Li, L.; He, L.; Mu, R.; Zhao, X.; Guo, F. Y/Hf-Doped AlCoCrFeNi High-Entropy Alloy with Ultra Oxidation and Spallation Resistance. Corros. Sci. 2020, 166. [Google Scholar] [CrossRef]
- Babic, V.; Geers, C.; Panas, I. Reactive Element Effects in High-Temperature Alloys Disentangled. Oxid. Met. 2020, 93, 229–245. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Quantitative Evaluation of Critical Cooling Rate for Metallic Glasses. Mater. Sci. Eng. A 2001, 304–306, 446–451. [Google Scholar] [CrossRef]
- Stott, F.H.; Wood, G.C.; Hobby, M.G. A Comparison of the Oxidation Behavior of Fe-Cr-Al, Ni-Cr-Al, and Co-Cr-Al Alloys. Oxid. Met. 1971, 3, 103–113. [Google Scholar] [CrossRef]
- Giggins, C.S.; Pettit, F.S. Oxidation of Ni-Cr-Al Alloys between 1000° and 1200 °C. J. Electrochem. Soc. 1971, 118, 1782–1790. [Google Scholar] [CrossRef]
- Uhlig, H.H. Initial Oxidation Rate of Metals and the Logarithmic Equation. Acta Met. 1956, 4, 541–554. [Google Scholar] [CrossRef]
- Gabrysiak, K.N.; Gaitzsch, U.; Weißgärber, T.; Kieback, B. Oxidation and Hot Gas Corrosion of Al–Cr–Fe–Ni-Based High-Entropy Alloys with Addition of Co and Mo. Adv. Eng. Mater. 2021, 23, 2100237. [Google Scholar] [CrossRef]
- Lu, J.; Li, L.; Zhang, H.; Chen, Y.; Luo, L.; Zhao, X.; Guo, F.; Xiao, P. Oxidation Behavior of Gas-Atomized AlCoCrFeNi High-Entropy Alloy Powder at 900–1100 °C. Corros. Sci. 2021, 181, 109257. [Google Scholar] [CrossRef]
- Tang, S.; Ning, L.K.; Xin, T.Z.; Zheng, Z. Coarsening Behavior of Gamma Prime Precipitates in a Nickel Based Single Crystal Superalloy. J. Mater. Sci. Technol. 2016, 32, 172–176. [Google Scholar] [CrossRef]
- John, R.; Nagini, M.; Govind, U.; Malladi, S.R.K.; Murty, B.S.; Fabijanic, D. Microstructural Evolution and Effect of Heat Treatment on the Precipitation and Mechanical Behavior of Al0.7CoCrFeNi Alloy. J. Alloys Compd. 2022, 904, 164105. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Zhang, X.; Zhou, D. Analysis of Globularization Modeling and Mechanisms of Alpha/Beta Titanium Alloy. J. Alloys Compd. 2019, 788, 110–117. [Google Scholar] [CrossRef]
Element | As-Designed (at.%) | As-Homogenized (at.%) |
---|---|---|
Al | 15.79 | 12.45 |
Co | 21.05 | 22.02 |
Cr | 21.05 | 21.19 |
Fe | 21.05 | 21.92 |
Ni | 21.05 | 22.42 |
Temperature (°C) | Rate Constant Kp | n |
---|---|---|
900 | 1.038 × 10−4 mg6.667/cm13.334.h | 6.667 |
1000 | 4.841 × 10−3 mg3.704/cm7.408.h | 3.704 |
1100 | 1.92 × 10−3 mg3.571/cm7.142.h | 3.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korda, A.A.; Akbar, M.A.; Muhammad, F.; Achmad, T.L.; Prawara, B.; Prajitno, D.H.; Jihad, B.H.; Setianto, M.H.; Basuki, E.A. High-Temperature Oxidation and Microstructural Changes of Al0.75CoCrFeNi High-Entropy Alloy at 900 and 1100 °C. Metals 2024, 14, 33. https://doi.org/10.3390/met14010033
Korda AA, Akbar MA, Muhammad F, Achmad TL, Prawara B, Prajitno DH, Jihad BH, Setianto MH, Basuki EA. High-Temperature Oxidation and Microstructural Changes of Al0.75CoCrFeNi High-Entropy Alloy at 900 and 1100 °C. Metals. 2024; 14(1):33. https://doi.org/10.3390/met14010033
Chicago/Turabian StyleKorda, Akhmad Ardian, Mohamad Ali Akbar, Fadhli Muhammad, Tria Laksana Achmad, Budi Prawara, Djoko Hadi Prajitno, Bagus Hayatul Jihad, Muhamad Hananuputra Setianto, and Eddy Agus Basuki. 2024. "High-Temperature Oxidation and Microstructural Changes of Al0.75CoCrFeNi High-Entropy Alloy at 900 and 1100 °C" Metals 14, no. 1: 33. https://doi.org/10.3390/met14010033
APA StyleKorda, A. A., Akbar, M. A., Muhammad, F., Achmad, T. L., Prawara, B., Prajitno, D. H., Jihad, B. H., Setianto, M. H., & Basuki, E. A. (2024). High-Temperature Oxidation and Microstructural Changes of Al0.75CoCrFeNi High-Entropy Alloy at 900 and 1100 °C. Metals, 14(1), 33. https://doi.org/10.3390/met14010033