Barrier Properties of Cr/Ta-Coated Zr-1Nb Alloy under High-Temperature Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Coating Deposition
2.3. Oxidation Tests in Water Steam
2.4. Sample Characterization
3. Results
3.1. Weight Gain Measurements
3.2. Scanning Electron Microscopy of Samples after Oxidation
3.3. Optical Microscopy of Samples after Oxidation
3.4. In Situ XRD Study
4. Discussion
5. Conclusions
- Corrosion resistance of the Cr/α-Ta-coated Zr alloy samples is better than Cr/β-Ta under all considered conditions. The weight gain of the Cr/β-Ta samples is 3 times higher compared to Cr/β-Ta (36.17 mg/cm2 and 14 mg/cm2, respectively) under steam oxidation at 1400 °C. All other experiments further confirm the better performance of samples having an α-Ta interlayer compared to a β-Ta one.
- Up to 1330 °C, the protective properties of the Cr/Ta coating are preserved, and in the case of the Cr/α-Ta samples, the thickness of the residual chromium decreased in comparison with the samples studied at 1250 °C. At 1400 °C, a thin layer of Cr2O3 and a thick layer of ZrO2 are observed, which indicates a complete loss of protective properties of the coating. The coating delamination is observed during long-term oxidation due to the formation of many cavities at the interfaces, which may coalesce into large pores.
- The Ta barrier interlayer deposited between the protective Cr coating and the Zr-1Nb zirconium alloy can limit Cr-Zr interdiffusion due to a deceleration of the Cr2Zr phase formation under high-temperature oxidation. This limitation is realized up to 1330 °C only for a short period, and this affect was not observed during oxidation at 1400 °C.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirano, M.; Yonomoto, T.; Ishigaki, M.; Watanabe, N.; Maruyama, Y.; Sibamoto, Y.; Watanabe, T.; Moriyama, K. Insights from review and analysis of the Fukushima Dai-ichi accident: Fukushima NPP accident related. J. Nucl. Sci. Technol. 2012, 49, 1–17. [Google Scholar] [CrossRef]
- Allen, T.R.; Konings, R.J.M.; Motta, A.T. Corrosion of Zirconium Alloys. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 5, pp. 49–68. [Google Scholar]
- Yadav, K.K.; Pal, U.; Karthikeyan, R. Concept of accident tolerant fuel in nuclear reactors. Nucl. Part. Phys. Proc. 2023, 341, 62–66. [Google Scholar] [CrossRef]
- Cheng, B. Fuel behavior in severe accidents and Mo-alloy based cladding designs to improve accident tolerance. In Proceedings of the TopFuel 2012, Manchester, UK, 2–6 September 2012. [Google Scholar]
- Hallstadius, L.; Johnson, S.; Lahoda, E. Cladding for high performance fuel. Prog. Nucl. Energy 2012, 57, 71–76. [Google Scholar] [CrossRef]
- Kim, W.J.; Hwang, H.S.; Park, J.Y.; Ryu, W.-S. Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at 360 °C. J. Mater. Sci. Lett. 2003, 22, 581–584. [Google Scholar] [CrossRef]
- Terrani, K.A.; Zinkle, S.J.; Snead, L.L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 2014, 448, 420–435. [Google Scholar] [CrossRef]
- Pint, B.A.; Unocic, K.A.; Terrani, K.A. Effect of steam on high temperature oxidation behavior of alumina-forming alloys. Mater. High Temp. 2015, 32, 28–35. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Du, P.; Song, P.; Zhang, R.; Li, Z.; Lu, J. Oxidation properties and microstructure of a chromium coating on zircaloy-4 fuel cladding material applied by atmospheric plasma spraying. J. Nucl. Mater. 2022, 560, 153496. [Google Scholar] [CrossRef]
- Kashkarov, E.B.; Sidelev, D.V.; Rombaeva, M.R.; Syrtanov, M.S.; Bleykher, G.A. Chromium coatings deposited by cooled and hot target magnetron sputtering for accident tolerant nuclear fuel claddings. Surf. Coat. Technol. 2020, 389, 125618. [Google Scholar] [CrossRef]
- Kim, D.; Lee, Y. Diffusion of chromium of Cr-coated Zircaloy accident tolerant fuel cladding: Model development and experimental validation. Surf. Coat. Technol. 2023, 468, 129698. [Google Scholar] [CrossRef]
- Bae, J.; Hong, S.; Ro, T. Effect of chromium coated zircaloy cladding of accident tolerant fuel on the best estimate LOCA methodology. Prog. Nucl. Energy 2022, 151, 104330. [Google Scholar] [CrossRef]
- Yang, J.; Steinbrück, M.; Tang, C.; Liu, J.; Zhang, J.; Yun, D.; Wang, S. Review on chromium coated zirconium alloy accident tolerant fuel cladding. J. Alloys Compd. 2022, 895, 162450. [Google Scholar] [CrossRef]
- Brachet, J.; Idarraga-Trujillo, I.; Flem, M.L.; Saux, M.L.; Vandenberghe, V.; Urvoy, S.; Rouesne, E.; Guilbert, T.; Toffolon-Masclet, C.; Tupin, M.; et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors. J. Nucl. Mater. 2019, 517, 268–285. [Google Scholar] [CrossRef]
- Kim, H.-G.; Kim, I.-H.; Jung, Y.-I.; Park, D.-J.; Park, J.-Y.; Koo, Y.-H. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating. J. Nucl. Mater. 2015, 465, 531–539. [Google Scholar] [CrossRef]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Qi, F.; Liu, Z.; Li, Q.; Yu, H.; Chen, P.; Li, Y.; Zhou, Y.; Ma, C.; Tang, C.; Huang, Y.; et al. Pellet-cladding mechanical interaction analysis of Cr-coated Zircaloy cladding. Nucl. Eng. Des. 2020, 367, 110792. [Google Scholar] [CrossRef]
- Brachet, J.C.; Rouesne, E.; Ribis, J.; Guilbert, T.; Urvoy, S.; Nony, G.; Toffolon-Masclet, C.; Le Saux, M.; Chaabane, N.; Palancher, H. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process. Corros. Sci. 2020, 167, 108537. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Ruchkin, S.E.; Syrtanov, M.S.; Kashkarov, E.B.; Shelepov, I.A.; Malgin, A.G.; Polunin, K.K.; Mokrushin, A.A. Protective Cr coatings with CrN/Cr multilayers for zirconium fuel claddings. Surf. Coat. Technol. 2022, 433, 128131. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Chen, Q.; Yang, J.; Liu, J.; Yang, H.; Zhang, W.; Zhang, R.; He, L.; Long, J.; et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering. Corros. Sci. 2021, 191, 109755. [Google Scholar] [CrossRef]
- Yang, J.; Shang, L.; Sun, J.; Bai, S.; Wang, S.; Liu, J.; Yun, D.; Ma, D. Restraining the Cr-Zr interdiffusion of Cr-coated Zr alloys in high temperature environment: A Cr/CrN/Cr coating approach. Corros. Sci. 2023, 214, 111015. [Google Scholar] [CrossRef]
- Wang, X.; Guan, H.; Liao, Y.; Zhu, M.; Xu, C.; Jin, X.; Liao, B.; Xue, W.; Zhang, Y.; Bai, G.; et al. Enhancement of High Temperature Steam Oxidation Resistance of Zr–1Nb Alloy with ZrO2/Cr Bilayer Coating. Corros. Sci. 2021, 187, 109494. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Ruchkin, S.E.; Shelepov, I.A.; Saburov, N.S.; Malgin, A.G.; Polunin, K.K.; Stoykov, K.V.; Mokrushin, A.A. Protective Cr Coatings with ZrO2/Cr Multilayers for Zirconium Fuel Claddings. Coatings 2022, 12, 1409. [Google Scholar] [CrossRef]
- Kashkarov, E.; Afornu, B.; Sidelev, D.; Krinitcyn, M.; Gouws, V.; Lider, A. Recent advances in protective coatings for accident tolerant Zr-based fuel claddings. Coatings 2021, 11, 557. [Google Scholar] [CrossRef]
- Isayev, R.; Dzhumaev, P. Interaction of a diffusion barrier from the refractory metals with a zirconium alloy and a chrome coating of an accident tolerant fuel. Nucl. Eng. Des. 2023, 407, 112307. [Google Scholar] [CrossRef]
- Tiwari, G.; Sharma, B.; Raghunathan, V.; Patil, R. Self-and solute-diffusion in dilute zirconium-niobium alloys in β-phase. J. Nucl. Mater. 1973, 46, 35–40. [Google Scholar] [CrossRef]
- Paz y Puente, A.; Dickson, J.; Keiser, D.D.; Sohn, Y.H. Investigation of interdiffusion behavior in the Mo–Zr binary system via diffusion couple studies. Int. J. Refract. Met. Hard Mater. 2014, 43, 317–321. [Google Scholar] [CrossRef]
- Syrtanov, M.S.; Kashkarov, E.B.; Abdulmenova, A.V.; Gusev, K.; Sidelev, D.V. High-Temperature steam oxidation of Accident-Tolerant Cr/Mo-Coated Zr alloy at 1200–1400 °C. Coatings 2023, 13, 191. [Google Scholar] [CrossRef]
- Franke, P.; Neuschütz, D. Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr: Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys. In Thermodynamic Properties of Inorganic Materials; Franke, P., Neuschütz, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Villars, P.; Okamoto, H. Cr-Ta Binary Phase Diagram 0–100 at.% Ta. Available online: https://materials.springer.com/isp/phase-diagram/docs/c_0981168 (accessed on 13 April 2024).
- Zhang, Q.; Zhao, J. Impurity and interdiffusion coefficients of the Cr–X (X = Co, Fe, Mo, Nb, Ni, Pd, Pt, Ta) binary systems. J. Alloys Compd. 2014, 604, 142–150. [Google Scholar] [CrossRef]
- Villars, P.; Okamoto, H. Ta-Zr Binary Phase Diagram 0–100 at.% Zr. Available online: https://materials.springer.com/isp/phase-diagram/docs/c_0104200 (accessed on 13 April 2024).
- Hallmann, L.; Ulmer, P. Effect of sputtering parameters and substrate composition on the structure of tantalum thin films. Appl. Surf. Sci. 2013, 282, 1–6. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Kashkarov, E.B.; Syrtanov, M.S.; Krivobokov, V.P. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings. Surf. Coat. Technol. 2019, 369, 69–78. [Google Scholar] [CrossRef]
- Ren, H.; Sosnowski, M. Tantalum thin films deposited by ion assisted magnetron sputtering. Thin Solid Film. 2008, 516, 1898–1905. [Google Scholar] [CrossRef]
- Ferreira, F.; Sousa, C.; Cavaleiro, A.; Anders, A.; Oliveira, J. Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode. Surf. Coat. Technol. 2017, 314, 97–104. [Google Scholar] [CrossRef]
- Syrtanov, M.S.; Kashkarov, E.B.; Abdulmenova, A.V.; Sidelev, D.V. High-temperature oxidation of Zr 1Nb zirconium alloy with protective Cr/Mo coating. Surf. Coat. Technol. 2022, 439, 128459. [Google Scholar] [CrossRef]
- Lee, S.; Doxbeck, M.; Mueller, J.; Cipollo, M.; Cote, P. Texture, structure and phase transformation in sputter beta tantalum coating. Surf. Coat. Technol./Surf. Coat. Technol. 2004, 177–178, 44–51. [Google Scholar] [CrossRef]
- Jin, Y.; Song, J.Y.; Jeong, S.H.; Kim, J.W.; Lee, T.G.; Kim, J.H.; Hahn, J. Thermal oxidation mechanism and stress evolution in Ta thin films. J. Mater. Res. 2010, 25, 1080–1086. [Google Scholar] [CrossRef]
- Lesage, B. Some aspects of diffusion in ceramics. J. De Phys. 1994, 4, 1833–1850. [Google Scholar] [CrossRef]
- Arias, D.; Abriata, J.P. The Cr−Zr (Chromium-Zirconium) system. Bull. Alloy Phase Diagr. 1986, 7, 237–244. [Google Scholar] [CrossRef]
- Liu, X.; Han, X.; Zhang, Z.; Ji, L.F.; Jiang, Y. The crystal structure of high temperature phase Ta2O5. Acta Mater. 2007, 55, 2385–2396. [Google Scholar] [CrossRef]
Layer | Q, W/cm2 | Ubias, V | js, mA/cm2 | Tmax, °C |
---|---|---|---|---|
Cr | 39 | −50 | 65 | 320 |
Ta (α-phase) | 39 | −100 | 16 | 210 |
Ta (β-phase) | 39 | floating | – | 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrtanov, M.S.; Korneev, S.P.; Kashkarov, E.B.; Sidelev, D.V.; Moskvichev, E.N.; Kudiiarov, V.N. Barrier Properties of Cr/Ta-Coated Zr-1Nb Alloy under High-Temperature Oxidation. Metals 2024, 14, 645. https://doi.org/10.3390/met14060645
Syrtanov MS, Korneev SP, Kashkarov EB, Sidelev DV, Moskvichev EN, Kudiiarov VN. Barrier Properties of Cr/Ta-Coated Zr-1Nb Alloy under High-Temperature Oxidation. Metals. 2024; 14(6):645. https://doi.org/10.3390/met14060645
Chicago/Turabian StyleSyrtanov, Maxim Sergeevich, Stepan Pavlovich Korneev, Egor Borisovich Kashkarov, Dmitrii Vladimirovich Sidelev, Evgeny Nikolaevich Moskvichev, and Viktor Nikolaevich Kudiiarov. 2024. "Barrier Properties of Cr/Ta-Coated Zr-1Nb Alloy under High-Temperature Oxidation" Metals 14, no. 6: 645. https://doi.org/10.3390/met14060645
APA StyleSyrtanov, M. S., Korneev, S. P., Kashkarov, E. B., Sidelev, D. V., Moskvichev, E. N., & Kudiiarov, V. N. (2024). Barrier Properties of Cr/Ta-Coated Zr-1Nb Alloy under High-Temperature Oxidation. Metals, 14(6), 645. https://doi.org/10.3390/met14060645