Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Crystallographic Texture
3.3. Mechanical Properties
3.4. Impact Strength
3.5. Fracture Surface of the Specimens after Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leyens, C.; Peters, M. Titanium and Titanium Alloys. Fundamentals and Applications; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; p. 513. [Google Scholar]
- Gupta, R.K.; Mathew, C.; Ramkumar, P. Strain Hardening in Aerospace Alloys. Front. Aerosp. Eng. 2015, 4, 1–13. [Google Scholar] [CrossRef]
- Semenova, I.P.; Polyakova, V.V.; Dyakonov, G.S.; Polyakov, A.V. Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications. Adv. Eng. Mater. 2020, 22, 1900651. [Google Scholar] [CrossRef]
- Wu, X.; Yang, M.; Yuan, F.; Wu, G.; Wei, Y.; Huang, X.; Zhu, Y. Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility. Proc. Natl. Acad. Sci. USA 2015, 112, 14501–14505. [Google Scholar] [CrossRef]
- Ovid’ko, I.A.; Sheinerman, A.G. Mechanical Properties of Nanotwinned Metals: A Review. Rev.Adv. Mater. Sci. 2016, 44, 1–25. [Google Scholar]
- Edalati, K.; Masuda, T.; Arita, M.; Furui, M.; Sauvage, X.; Horita, Z.; Valiev, R.Z. Room-Temperature Superplasticity in an Ultrafine-Grained Magnesium Alloy. Sci. Rep. 2017, 7, 2662. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Bingert, J.F.; Zhu, Y.T.; Liao, X.Z.; Valiev, R.Z.; Horita, Z.; Langdon, T.G.; Zhou, Y.Z.; Lavernia, E.J. Tougher Ultrafine Grain Cu via High-Angle Grain Boundaries and Low Dislocation Density. Appl. Phys. Lett. 2008, 92, 081903. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Kammerhofer, C.; Pippan, R. The Ductile to Brittle Transition of Ultrafine-Grained Armco Iron: An Experimental Study. J. Mater. Sci. 2010, 45, 4805–4812. [Google Scholar] [CrossRef]
- Semenova, I.P.; Modina, Y.M.; Stotskiy, A.G.; Polyakov, A.V.; Pesin, M.V. Fatigue Properties of Ti Alloys with an Ultrafine Grained Structure: Challenges and Achievements. Metals 2022, 12, 312. [Google Scholar] [CrossRef]
- Zhou, W.; Lin, J.; Dean, T.A. Microstructure and Mechanical Properties of Curved AZ31 Magnesium Alloy Profiles Produced by Differential Velocity Sideways Extrusion. J. Magnes. Alloys 2023, 11, 493–508. [Google Scholar] [CrossRef]
- Seipp, S.; Wagner, M.F.-X.; Hockauf, K.; Schneider, I.; Meyer, L.W.; Hockauf, M. Microstructure, Crystallographic Texture and Mechanical Properties of the Magnesium Alloy AZ31B after Different Routes of Thermo-Mechanical Processing. Int. J. Plast. 2012, 35, 155–166. [Google Scholar] [CrossRef]
- Sadrkhah, M.; Faraji, G.; Khorasani, S.; Mesbah, M. Excellent Mechanical Properties, Wettability and Biological Response of Ultrafine-Grained Pure Ti Dental Implant Surface Modified by SLActive. J. Mater. Eng. Perform. 2023, 32, 11408–11421. [Google Scholar] [CrossRef]
- Völker, B.; Wurster, S.; Pippan, R.; Hohenwarter, A. Fracture of Severely Plastically Deformed Titanium. Mater. Lett. 2022, 309, 131382. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Pippan, R. Fracture of ECAP-Deformed Iron and the Role of Extrinsic Toughening Mechanisms. Acta Mater. 2013, 61, 2973–2983. [Google Scholar] [CrossRef] [PubMed]
- Pippan, R.; Hohenwarter, A. The Importance of Fracture Toughness in Ultrafine and Nanocrystalline Bulk Materials. Mater. Res. Lett. 2016, 4, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-L.; Xu, Y.-B.; Tan, X.-D.; Wu, D. Influences of Crystallography and Delamination on Anisotropy of Charpy Impact Toughness in API X100 Pipeline Steel. Mater. Sci. Eng. A 2014, 607, 53–62. [Google Scholar] [CrossRef]
- Hrabe, N.; White, R.; Lucon, E. Effects of Internal Porosity and Crystallographic Texture on Charpy Absorbed Energy of Electron Beam Melting Titanium Alloy (Ti-6Al-4V). Mater. Sci. Eng. A 2019, 742, 269–277. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Huang, A.; Gao, L.; Li, Y.; Huang, C. Promising Tensile and Fatigue Properties of Commercially Pure Titanium Processed by Rotary Swaging and Annealing Treatment. Materials 2018, 11, 2261. [Google Scholar] [CrossRef]
- Chao, J.; Capdevila, C. The Influence of Texture on the Ductile-to-Brittle Transition Behavior in Fe20Cr4.5Al Oxide Dispersion Strengthened Alloy. Metals 2020, 10, 87. [Google Scholar] [CrossRef]
- Saray, O.; Purcek, G.; Karaman, I.; Maier, H.J. Impact Toughness of Ultrafine-Grained Interstitial-Free Steel. Met. Mater. Trans. A 2012, 43, 4320–4330. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Zavalij, P.Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-09578-3. [Google Scholar]
- Isaenkova, M.; Perlovich, Y.; Fesenko, V. Modern Methods of Experimental Construction of Texture Complete Direct Pole Figures by Using X-Ray Data. IOP Conf. Ser. Mater. Sci. Eng. 2016, 130, 012055. [Google Scholar] [CrossRef]
- Perlovich, Y.A.; Isaenkova, M.G.; Krymskaya, O.A.; Fesenko, V.A.; Babich, Y.A. Optimization of the Procedure for Determining Integral Texture Parameters of Products from Zirconium-Based Alloys Using the Orientation Distribution Function. IOP Conf. Ser. Mater. Sci. Eng. 2016, 130, 012056. [Google Scholar] [CrossRef]
- Pawlik, K. Determination of the orientation distribution function from pole figures in arbitrarily defined cells. Phys. Stat. Sol. (b) 1986, 134, 477–483. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, I.; Kim, J.; Kim, Y.S.; Semiatin, S.L. Microstructure Development during Equal-Channel Angular Pressing of Titanium. Acta Mater. 2003, 51, 983–996. [Google Scholar] [CrossRef]
- Bian, N.; Li, F.; Du, H.; Niu, W.; Chen, Z. Effect Mechanism of Texture Orientation on Mechanical Properties and Hall-Petch Relationship of CVCDE AZ31 Magnesium Alloy via Crystal Plastic Finite Element Method (CPFEM). J. Alloys Compd. 2022, 923, 166248. [Google Scholar] [CrossRef]
- Sabirov, I.; Valiev, R.Z.; Pippan, R. About Application of Three Dimensional Analyses of Fracture Surfaces in Fracture Study on Nanostructured Titanium. Comput. Mater. Sci. 2013, 76, 72–79. [Google Scholar] [CrossRef]
- Moreno-Valle, E.C.; Pachla, W.; Kulczyk, M.; Savoini, B.; Monge, M.A.; Ballesteros, C.; Sabirov, I. Anisotropy of Uni-Axial and Bi-Axial Deformation Behavior of Pure Titanium after Hydrostatic Extrusion. Mater. Sci. Eng. A 2013, 588, 7–13. [Google Scholar] [CrossRef]
- Collings, E.W. The Physical Metallurgy of Titanium Alloys; ASM Series in Metal Processing; American Society for Metals: Metals Park, OH, USA, 1984; ISBN 978-0-87170-181-7. [Google Scholar]
- Tkachev, E.; Belyakov, A.; Kaibyshev, R. Effect of Hot-Rolling on the Microstructure and Impact Toughness of an Advanced 9%Cr Steel. Crystals 2023, 13, 492. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Zhilyaev, A.P.; Langdon, T.G. Bulk Nanostructured Materials: Fundamentals and Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-118-09540-9. [Google Scholar]
- Valiev, R.Z.; Langdon, T.G. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Modina, I.M.; Dyakonov, G.S.; Stotskiy, A.G.; Yakovleva, T.V.; Semenova, I.P. Effect of the Texture of the Ultrafine-Grained Ti-6Al-4V Titanium Alloy on Impact Toughness. Materials 2023, 16, 1318. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, Z.J.; Wang, Y.F.; Ren, D.X.; Li, J.Y. The Relationship between Microstructures and Mechanical Properties in Friction Stir Lap Welding of Titanium Alloy. Mater. Chem. Phys. 2023, 296, 127251. [Google Scholar] [CrossRef]
- Buirette, C.; Huez, J.; Gey, N.; Vassel, A.; Andrieu, E. Study of Crack Propagation Mechanisms during Charpy Impact Toughness Tests on both Equiaxed and Lamellar Microstructures of Ti–6Al–4V Titanium Alloy. Mater. Sci. Eng. A 2014, 618, 546–557. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Zhao, Y.; Jia, Z. Effect of Microstructure Evolution of the Lamellar Alpha on Impact Toughness in a Two-Phase Titanium Alloy. Mater. Sci. Eng. A 2016, 676, 434–440. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Pippan, R. Influence of Processing Route on the Fracture Resistance of Equal Channel Angular Pressing Deformed Iron. Adv. Eng. Mater. 2023, 25, 2201011. [Google Scholar] [CrossRef]
- Shi, X.; Zeng, W.; Zhao, Q. The Effects of Lamellar Features on the Fracture Toughness of Ti-17 Titanium Alloy. Mater. Sci. Eng. A 2015, 636, 543–550. [Google Scholar] [CrossRef]
- Ghonem, H. Microstructure and Fatigue Crack Growth Mechanisms in High Temperature Titanium Alloys. Int. J. Fatigue 2010, 32, 1448–1460. [Google Scholar] [CrossRef]
- Williams, J.C.; Boyer, R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Lei, L.; Zhao, Y.; Zhao, Q.; Wu, C.; Huang, S.; Jia, W.; Zeng, W. Impact Toughness and Deformation Modes of Ti–6Al–4V Alloy with Different Microstructures. Mater. Sci. Eng. A 2021, 801, 140411. [Google Scholar] [CrossRef]
- Da Silva, L.; Sivaswamy, G.; Sun, L.; Rahimi, S. Effect of Texture and Mechanical Anisotropy on Flow Behaviour in Ti–6Al–4V Alloy under Superplastic Forming Conditions. Mater. Sci. Eng. A 2021, 819, 141367. [Google Scholar] [CrossRef]
- Cizek, P.; Kada, S.R.; Wang, J.; Armstrong, N.; Antoniou, R.A.; Lynch, P.A. Dislocation structures representing individual slip systems within the α phase of a Ti–6Al–4V alloy deformed in tension. Mater. Sci. Eng. A 2020, 797, 140225. [Google Scholar] [CrossRef]
- Zaefferer, S. A Study of Active Deformation Systems in Titanium Alloys: Dependence on Alloy Composition and Correlation with Deformation Texture. Mater. Sci. Eng. A 2003, 344, 20–30. [Google Scholar] [CrossRef]
- Li, H.; Mason, D.E.; Bieler, T.R.; Boehlert, C.J.; Crimp, M.A. Methodology for Estimating the Critical Resolved Shear Stress Ratios of α-Phase Ti Using EBSD-Based Trace Analysis. Acta Mater. 2013, 61, 7555–7567. [Google Scholar] [CrossRef]
- Benmessaoud, F.; Cheikh, M.; Velay, V.; Vidal, V.; Matsumoto, H. Role of grain size and crystallographic texture on tensile behavior induced by sliding mechanism in Ti-6Al-4V alloy. Mater. Sci. Eng. A 2020, 774, 138835. [Google Scholar] [CrossRef]
- Meng, J.; Chen, X.; Jiang, J.; Liu, L. Investigation on Anisotropic Mechanical Behavior of Ti-6Al-4V Alloy via Schmid Factor and Kernel Average Misorientation Distribution. Metals 2022, 13, 89. [Google Scholar] [CrossRef]
- Anne, B.R.; Okuyama, Y.; Morikawa, T.; Tanaka, M. Activated Slip Systems in Bimodal Ti–6Al–4V Plastically Deformed at Low and Moderately High Temperatures. Mater. Sci. Eng. A 2020, 798, 140211. [Google Scholar] [CrossRef]
- Umezawa, O.; Morita, M.; Yuasa, T.; Morooka, S.; Ono, Y.; Yuri, T.; Ogata, T. Analyses of Heterogeneous Deformation and Subsurface Fatigue Crack Generation in Alpha Titanium Alloy at Low Temperature. AIP Conf. Proc. 2014, 1574, 34–41. [Google Scholar]
- Conrad, H. Effect of Interstitial Solutes on the Strength and Ductility of Titanium. Prog. Mater. Sci. 1981, 26, 123–403. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, Z.; Phukan, H.; Kenesei, P.; Park, J.-S.; Lind, J.; Suter, R.M.; Bieler, T.R. Direct Measurement of Critical Resolved Shear Stress of Prismatic and Basal Slip in Polycrystalline Ti Using High Energy X-ray Diffraction Microscopy. Acta Mater. 2017, 132, 598–610. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Z.; Jiang, H.; Zhao, X.; Gong, T.; Cui, X.; Cheng, J.; Liu, F.; Chen, W. Controlling the Microstructure and Fracture Toughness of the Ti–5Al–5Mo–5V–1Cr–1Fe Alloy by Multiple Heat Treatments. J. Mater. Res. Technol. 2022, 17, 2528–2539. [Google Scholar] [CrossRef]
Ti | Al | V | Fe | Zr | O | C | Si | N | H |
---|---|---|---|---|---|---|---|---|---|
89.174 | 6.360 | 4.090 | 0.190 | 0.010 | 0.145 | 0.008 | 0.016 | 0.005 | 0.002 |
T, °C | State | (MPa) | (MPa) | (%) | (%) |
---|---|---|---|---|---|
−196 | ECAP (along X) | 1790 ± 5 | 1695 ± 5 | 9.6 ± 1.0 | 1.8 ± 0.3 |
ECAP+upsetting (along X) | 1625 ± 10 | 1510 ± 30 | 11.3 ± 1.9 | 2.8 ± 1.0 | |
ECAP+upsetting (along Z) | 1555 ± 25 | 1460 ± 20 | 9.7 ± 2.0 | 1.2 ± 0.4 | |
ECAP+upsetting (along Y) | 1590 ± 30 | 1510 ± 30 | 9.0 ± 1.0 | 1.6 ± 0.4 | |
20 | ECAP (along X) | 1245 ± 5 | 1190 ± 10 | 10.6 ± 1.5 | 2.2 ± 0.5 |
ECAP+upsetting (along X) | 1065 ± 10 | 995 ± 5 | 14.1 ± 1.5 | 3.2 ± 0.5 | |
ECAP+upsetting (along Z) | 1075 ± 15 | 980 ± 20 | 12.4 ± 3.1 | 2.8 ± 0.5 | |
ECAP+upsetting (along Y) | 1030 ± 15 | 980 ± 20 | 11.9 ± 2.0 | 2.2 ± 0.6 | |
300 | ECAP (along X) | 970 ± 25 | 910 ± 10 | 13.7 ± 0.4 | 2.7 ± 0.1 |
ECAP+upsetting (along X) | 785 ± 10 | 695 ± 20 | 15.9 ± 1.2 | 4.0 ± 1.2 | |
ECAP+upsetting (along Z) | 795 ± 25 | 690 ± 40 | 13.8 ± 1.5 | 1.7 ± 0.5 | |
ECAP+upsetting (along Y) | 750 ± 10 | 675 ± 10 | 12.1 ± 1.5 | 2.3 ± 0.8 | |
500 | ECAP (along X) | 665 ± 5 | 598 ± 20 | 37.6 ± 8.0 | 2.4 ± 0.2 |
ECAP+upsetting (along X) | 630 ± 10 | 575 ± 10 | 33.0 ± 3.1 | 4.3 ± 0.5 | |
ECAP+upsetting (along Z) | 685 ± 10 | 550 ± 20 | 21.0 ± 0.5 | 3.0 ± 0.5 | |
ECAP+upsetting (along Y) | 625 ± 15 | 560 ± 10 | 18.6 ± 2.3 | 2.9 ± 0.5 |
State | KCV (MJ/m2) | ||||||
---|---|---|---|---|---|---|---|
−196 °C | −60 °C | 20 °C | 100 °C | 200 °C | 300 °C | 500 °C | |
ECAP (along Y) | 0.17 ± 0.04 | 0.22 ± 0.06 | 0.29 ± 0.02 | 0.34 ± 0.03 | 0.48 ± 0.02 | 0.88 ± 0.07 | 1.60 ± 0.02 |
ECAP+upsetting (along Z) | 0.17 ± 0.02 | 0.20 ± 0.02 | 0.26 ± 0.02 | 0.46 ± 0.05 | 0.75 ± 0.05 | 1.36 ± 0.15 | 1.77 ± 0.08 |
ECAP+upsetting (along Y) | 0.22 ± 0.04 | 0.23 ± 0.02 | 0.35 ± 0.03 | 0.56 ± 0.03 | 1.48 ± 0.45 | 1.85 ± 0.20 | 2.12 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modina, I.M.; Dyakonov, G.S.; Polyakov, A.V.; Stotskiy, A.G.; Semenova, I.P. Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy. Metals 2024, 14, 36. https://doi.org/10.3390/met14010036
Modina IM, Dyakonov GS, Polyakov AV, Stotskiy AG, Semenova IP. Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy. Metals. 2024; 14(1):36. https://doi.org/10.3390/met14010036
Chicago/Turabian StyleModina, Iuliia M., Grigory S. Dyakonov, Alexander V. Polyakov, Andrey G. Stotskiy, and Irina P. Semenova. 2024. "Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy" Metals 14, no. 1: 36. https://doi.org/10.3390/met14010036
APA StyleModina, I. M., Dyakonov, G. S., Polyakov, A. V., Stotskiy, A. G., & Semenova, I. P. (2024). Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy. Metals, 14(1), 36. https://doi.org/10.3390/met14010036