Multiscale Investigation of Microcracks and Grain Boundary Wetting in Press-Hardened Galvanized 20MnB8 Steel
Abstract
:1. Introduction
2. Experimental Details
2.1. Material and Sample Processing
2.2. Analytical Tools and Measurement Conditions
3. Results
3.1. Metal-Induced Embrittlement Cracks
3.2. Interaction between Zn and the Undeformed Base Steel
4. Discussion
- The Zn and Fe interdiffusion triggers the growth of α-Fe(Zn), which separates the liquid Zn from the steel base. The growth is mainly determined by the α-Fe(Zn) Zn-Fe reaction and bulk diffusion, respectively. GB diffusion is smeared out quickly by the high solubility of Zn in the α-Fe(Zn).
- Different diffusion constants and solubilities of the alloy elements in α-Fe(Zn) and γ-Fe lead to an additional region between the α-Fe(Zn) and the base steel. In our experiments, this region transforms later during quenching into Zn-free ferrite, forming an almost continuous layer along the interface of the steel and the coating.
- Only at positions where the α-Fe(Zn) Zn-Fe reaction is hampered by stabilized austenite can fast diffusion along austenite GBs happen. We assume a generally much slower bulk diffusion of Zn in austenite compared with ferrite. This leads to several µm deep penetrations of Zn with a low concentration along these specific GBs (see Figure 8, Figure 9 and Figure 10) during annealing above austenitizing temperature.
- During forming, when a force is applied, cracks are formed in the Zn coating at the position of the Zn-weakened PAGB and expose these Zn-sensitive GBs.
- Present liquid Zn or Zn vapor covers the new surfaces and can further trigger MIE, and macroscopic cracks are formed along these PAGBs (see Figure 3).
- This process can continue during hot forming in the presence of Zn until the hardening and the austenite–martensite transformation take place.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Faderl, J.; Manzenreiter, T.; Radlmayr, M. Press hardening of hot-dip galvanized 22MnB5: A stable and reproducible process. In Proceedings of the 2nd International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, 15–17 June 2019; pp. 199–205. [Google Scholar]
- Bhattacharya, D.; Cho, L.; van der Aa, E.; Pichler, A.; Pottore, N.; Ghassemi-Armaki, H.; Findley, K.O.; Speer, J.G. Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-Assisted liquid metal embrittlement. Mater. Sci. Eng. A 2021, 804, 140391. [Google Scholar] [CrossRef]
- Pant, P.; Rekha, M.Y.; Schubert, H.; Hilpert, B.; Brewer, L.N. Liquid metal embrittlement susceptibility of zinc-coated martensitic sheet steels. Mater. Sci. Eng. A 2023, 863, 143762. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Cho, L.; Marshall, D.; Walker, M.; van der Aa, E.; Pichler, A.; Ghassemi-Armaki, H.; Findley, K.O.; Speer, J.G. Liquid metal embrittlement susceptibility of two Zn-Coated advanced high strength steels of similar strengths. Mater. Sci. Eng. A 2021, 823, 141569. [Google Scholar] [CrossRef]
- Prabitz, K.M.; Asadzadeh, M.Z.; Pichler, M.; Antretter, T.; Beal, C.; Schubert, H.; Hilpert, B.; Gruber, M.; Sierlinger, R.; Ecker, W. Liquid Metal Embrittlement of Advanced High Strength Steel: Experiments and Damage Modeling. Materials 2021, 14, 5451. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.-D.; Todorova, M.; Hingerl, K.; Neugebauer, J. A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. Acta Mater. 2015, 90, 69–76. [Google Scholar] [CrossRef]
- Lynn, J.C.; Warke, W.R.; Gordon, P. Solid metal-induced embrittlement of steel. Mater. Sci. Eng. 1975, 18, 51–62. [Google Scholar] [CrossRef]
- Beckman, J.P.; Woodford, D.A. Gas phase embrittlement by metal vapors. Metall. Trans. A 1989, 20, 184–188. [Google Scholar] [CrossRef]
- Choi, D.-Y.; Sharma, A.; Uhm, S.-H.; Jung, J.P. Liquid metal embrittlement of resistance welded 1180 TRIP steel: Effect of electrode force on cracking behavior. Met. Mater. Int. 2019, 25, 219–228. [Google Scholar] [CrossRef]
- Takahashi, M.; Nakata, M.; Imai, K.; Kojima, N.; Otsuka, N. Liquid metal embrittlement of hot stamped galvannealed boron steel sheet—Effect of heating time on crack formation. ISIJ Int. 2017, 57, 1094–1101. [Google Scholar] [CrossRef]
- Cho, L.; Kang, H.; Lee, C.; De Cooman, B.C. Micostructure of liquid metal embrittlement cracks on Zn-coated 22MbB5 press-hardened steel. Scr. Mater. 2014, 90–91, 25–28. [Google Scholar] [CrossRef]
- Kang, H.; Cho, L.; Lee, C.; De Cooman, B.C. Zn penetration in liquid metal embrittled TWIP steel. Metall. Mater. Trans. A 2016, 47, 2885–2905. [Google Scholar] [CrossRef]
- Lee, C.W.; Fan, D.W.; Sohn, I.R.; Lee, S.-J.; De Cooman, B.C. Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall. Mater. Trans. A 2012, 43, 5122–5127. [Google Scholar] [CrossRef]
- Lee, C.W.; Choi, W.S.; Cho, L.; Cho, Y.R.; De Cooman, B.C. Liquid-metal-induced embrittlement related microcrack propagation on Zn-coated press hardening steel. ISIJ Int. 2015, 55, 264–271. [Google Scholar] [CrossRef]
- Beal, C.; Kleber, X.; Fabregue, D.; Bouzekri, M. Embrittlement of a zinc coated high manganese TWIP steel. Mater. Sci. Eng. A 2012, 543, 76–83. [Google Scholar] [CrossRef]
- Jung, G.; Woo, I.S.; Suh, D.W.; Kim, S.J. Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures. Met. Mater. Int. 2016, 22, 187–195. [Google Scholar] [CrossRef]
- Maleki, K.; McDermid, J.R.; McNally, E.A.; Bassim, N.D. On the origin of micro-cracking in in Zinc-coated press hardened steels. In Proceedings of the 12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet—GALVATECH 2021, Virtual Conference, 21–23 June 2021; pp. 1086–1095. [Google Scholar]
- Razmpoosh, M.H.; DiGiovanni, C.; Zhou, Y.N.; Biro, E. Pathway to understand liquid metal embrittlement (LME) in Fe-Zn couple: From fundamentals toward application. Prog. Mater. Sci. 2021, 121, 100798. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yuan, R.; Chakraborty, A.; Ghassemi-Armaki, H.; Zuo, J.M.; Maaß, R. Early stages of liquid-metal embrittlement in an advanced high-strength steel. Mater. Today Adv. 2022, 13, 100196. [Google Scholar] [CrossRef]
- Li, J.; Tong, C.; Zhang, R.; Shi, Z.; Lin, J. A data-informed review of scientific and technological developments and future trends in hot stamping. Int. J. Lightweight Mater. Manuf. 2023, in press. [Google Scholar] [CrossRef]
- Razmpoosh, M.H.; Langelier, B.; Marzbanrad, E.; Zurob, H.S.; Zhou, N.; Biro, E. Atomic-scale Investigation of Liquid-Metal-Embrittlement Crack-path: Revealing Mechanism and Role of Grain Boundary Chemistry. Acta Mater. 2021, 204, 116519. [Google Scholar] [CrossRef]
- Ma, Z.; Peng, W.; Ding, C.; Wu, G.; Zhang, J. Study on Cracking Behavior of High-Strength Steels by Liquid Zinc-Induced Embrittlement. Steel Res. Int. 2022, 93, 2100483. [Google Scholar] [CrossRef]
- Kolnberger, S.; Haslmayr, J. Method and Device for Producing Hardened Steel Components. Justia Patent 20190047032, 14 February 2019. [Google Scholar]
- Haslmayr, J.; Kolnberger, S.; Schwinghammer, H.; Sommer, A.; Tutewohl, B. Method and Device for Producing Hardened Steel Components. Justia Patent 20190048432, 14 February 2019. [Google Scholar]
- Kolnberger, S.; Faderl, J.; Kurz, T.; Haslmayr, J. Avoiding Zinc induced cracking in hot forming. In Proceedings of the 12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet—GALVATECH 2021, Virtual Conference, 21–23 June 2021; pp. 1059–1068. [Google Scholar]
- Ling, Z.; Wang, M.; Kong, L. Liquid metal embrittlement of galvanized steels during industrial processing: A review. In Transactions on Intelligent Welding Manufacturing; Chen, S., Zhang, Y., Feng, Z., Eds.; Springer: Singapore, 2018; pp. 25–42. [Google Scholar]
- Johansson, A.; Ljung, H.; Westman, S. X-ray and neutron diffraction studies on gamma-Ni, Zn and gamma-Fe, Zn. Acta Chem. Scand. 1968, 22, 2743–2753. [Google Scholar] [CrossRef]
- Koster, A.S.; Schoone, J.C. Structure of the cubic iron–zinc phase Fe22Zn78. Acta Crystallogr. B 1981, 37, 1905–1907. [Google Scholar] [CrossRef]
- Belin, C.H.E.; Belin, R.C.H. Synthesis and crystal structure determinations in the Γ and δ phase domains of the iron–zinc system: Electronic and bonding analysis of Fe13Zn39 and FeZn10, a subtle deviation from the Hume–Rothery standard? J. Solid State Chem. 2000, 151, 85–95. [Google Scholar] [CrossRef]
- Brown, P.J. The structure of the δ-phase in the transition metal–zinc alloy systems. Acta Crystallogr. 1962, 15, 608–612. [Google Scholar] [CrossRef]
- Janik, V.; Lan, Y.; Beentjes, P.; Norman, D.; Hensen, G.; Sridhar, S. Zn Diffusion and α-Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel. Metall. Mater. Trans. A 2016, 47, 400–411. [Google Scholar] [CrossRef]
- Järvinen, H.; Honkanen, M.; Patnamsetty, M.; Järn, S.; Heinonen, E.; Jiang, H.; Peura, P. Press hardening of zinc-coated boron steels: Role of steel composition in the development of phase structures within coating and interface regions. Surf. Coat. Technol. 2018, 352, 378–391. [Google Scholar] [CrossRef]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Cystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Gourgues, A.-F.; Flower, H.M.; Lindley, T.C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater. Sci. Technol. 2000, 16, 26–40. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Cho, L.; Colburn, J.; Smith, D.; Marshall, D.; van der Aa, E.; Pichler, A.; Ghassemi-Armaki, H.; Pottore, N.; Findley, K.O.; et al. Influence of selected alloying variations on liquid metal embrittlement susceptibility of quenched and partitioned steels. Mater. Des. 2022, 224, 111356. [Google Scholar] [CrossRef]
- Feliu, S., Jr.; Barranco, V. XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel. Acta Mater. 2003, 51, 5413–5424. [Google Scholar] [CrossRef]
- Allegra, L.; Hart, R.G.; Townsend, H.E. Intergranular zinc embrittlement and its inhibition by phosphorus in 55 pct Al-Zn-coated steel sheet. Metall. Mater. Trans. A 1983, 14, 401–411. [Google Scholar] [CrossRef]
- Luo, J.; Cheng, H.; Asl, K.M.; Kiely, C.J.; Harmer, M.P. The role of a bilayer interfacial phase on liquid metal embrittlement. Science 2011, 333, 1730–1733. [Google Scholar] [CrossRef] [PubMed]
Phase | Composition | Lattice Constant (Å) | Crystal System | Space Group | Space Group Number | Melting Temp. (°C) |
---|---|---|---|---|---|---|
Ferrite | Fe | a = 2.8710 | Cubic | I m −3 m | 229 | - |
Γ | Fe4Zn9 | a = 8.9820 [28] | Cubic | I −4 3 m | 217 | 782 |
Γ1 | Fe11Zn40 | a = 17.9630 [29] | Cubic | F −4 3 m | 216 | - |
δ | FeZn11 | a = 12.7870 c = 57.2220 [30] | Hexagonal | P 63/m m c | 194 | 670 |
ζ | FeZn13 | a = 10.8618 b = 7.6080 c = 5.0610 β = 100.542° [31] | Monoclinic | C 1 2/m 1 | 12 | 530 |
Zinc | Zn | a = 2.6640 b = 4.9469 | Hexagonal | P 63/m m c | 194 | 420 |
Zincite | ZnO | a = 3.2489 b = 5.2049 | Hexagonal | P 63/m m c | 186 | 1975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arndt, M.; Kürnsteiner, P.; Truglas, T.; Duchoslav, J.; Hingerl, K.; Stifter, D.; Commenda, C.; Haslmayr, J.; Kolnberger, S.; Faderl, J.; et al. Multiscale Investigation of Microcracks and Grain Boundary Wetting in Press-Hardened Galvanized 20MnB8 Steel. Metals 2024, 14, 46. https://doi.org/10.3390/met14010046
Arndt M, Kürnsteiner P, Truglas T, Duchoslav J, Hingerl K, Stifter D, Commenda C, Haslmayr J, Kolnberger S, Faderl J, et al. Multiscale Investigation of Microcracks and Grain Boundary Wetting in Press-Hardened Galvanized 20MnB8 Steel. Metals. 2024; 14(1):46. https://doi.org/10.3390/met14010046
Chicago/Turabian StyleArndt, Martin, Philipp Kürnsteiner, Tia Truglas, Jiri Duchoslav, Kurt Hingerl, David Stifter, Christian Commenda, Johannes Haslmayr, Siegfried Kolnberger, Josef Faderl, and et al. 2024. "Multiscale Investigation of Microcracks and Grain Boundary Wetting in Press-Hardened Galvanized 20MnB8 Steel" Metals 14, no. 1: 46. https://doi.org/10.3390/met14010046
APA StyleArndt, M., Kürnsteiner, P., Truglas, T., Duchoslav, J., Hingerl, K., Stifter, D., Commenda, C., Haslmayr, J., Kolnberger, S., Faderl, J., & Groiss, H. (2024). Multiscale Investigation of Microcracks and Grain Boundary Wetting in Press-Hardened Galvanized 20MnB8 Steel. Metals, 14(1), 46. https://doi.org/10.3390/met14010046