Parent Grain Reconstruction in an Additive Manufactured Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. EBSD Measurements
2.2. Reconstruction Methodology
3. Results and Discussion
3.1. Reconstruction Fidelity
3.2. Sampling Resolution
3.3. Assigning Reconstructed Orientations
- (1)
- Each point is assigned the orientation associated with the reconstructed grain to which it belongs, denoted grain-to-point.
- (2)
- Each point is assigned the orientation calculated by applying the ORV of the variant containing the specified point to the average orientation of the variant, denoted variant-to-point.
- (3)
- Each point is assigned the orientation calculated by applying the ORV of the variant containing the point to the orientation of the specified point, denoted point-to-point.
3.4. Orientation Relationship Refinement
- Collect a random set of one thousand pairs of neighboring child grains (at least the first grain in the pair is random), ensuring both child grains belong to the same parent grain.
- For each pair, calculate the disorientation between each of the two grains versus that of the parent. Add both disorientations to the global disorientation.
- Divide the summed global disorientation by the number of pairs to get the average disorientation. (Note there is more to the quaternion-based disorientation averaging scheme than described here—the actual algorithm used is an adaptation of that described in reference [15]).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cayron, C. Crystallographic reconstruction methods to study phase transformations by EBSD. Microsc. Microanal. 2009, 15, 396–397. [Google Scholar] [CrossRef]
- Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater. 2010, 58, 6393–6403. [Google Scholar] [CrossRef]
- Germain, L.; Gey, N.; Mercier, R.; Blaineau, P.; Humbert, M. An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: Application to steels. Acta Mater. 2012, 60, 4551–4562. [Google Scholar] [CrossRef]
- Ranger, C.; Tari, V.; Farjami, S.; Merwin, M.J.; Germain, L.; Rollett, A. Austenite reconstruction elucidates prior grain size dependence of toughness in a low alloy steel. Metall. Mater. Trans. A 2018, 49, 4521–4535. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ni, H.C.; Yen, H.W. New protocol for orientation reconstruction from martensite to austenite in steels. Materialia 2022, 9, 100554. [Google Scholar] [CrossRef]
- Brust, A.; Payton, E.; Hobbs, T.; Sinha, V.; Yardley, V.; Niezgoda, S. Probabilistic reconstruction of austenite microstructure from electron backscatter diffraction observations of martensite. Microsc. Microanal. 2021, 27, 1035–1055. [Google Scholar] [CrossRef] [PubMed]
- Hielscher, R.; Nyyssönen, T.; Niessen, F.; Gazder, A.A. The variant graph approach to improved parent grain reconstruction. Materialia 2022, 22, 101399. [Google Scholar] [CrossRef]
- Adams, B.L.; Wright, S.I.; Kunze, K. Orientation Imaging: The Emergence of a New Microscopy. Metall. Trans. A 1993, 24, 819–831. [Google Scholar] [CrossRef]
- Nowell, M.M.; Field, D.P.; Wright, S.I.; Dingley, D.; Scutts, P.; Suzuki, S. Orientation Imaging of Recrystallization, Grain Growth and Phase Transformations using In-Situ Heating. Microsc. Microanal. 2005, 11, 1494–1495. [Google Scholar] [CrossRef]
- Wright, S.I. Random thoughts on non-random misorientation distributions. Mater. Sci. Technol. 2006, 22, 1287–1296. [Google Scholar] [CrossRef]
- Aurenhammer, F.; Klein, R.; Lee, D.-T. Handbook of Discrete and Computational Geometry; World Scientific Publishing Company: Singapore, 2013. [Google Scholar] [CrossRef]
- Delaunay, B. Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS. Cl. Sci. Math. Nat. 1934, 6, 793–800. [Google Scholar]
- Field, D.P. Recent advances in the application of orientation imaging. Ultramicroscopy 1997, 67, 1–9. [Google Scholar] [CrossRef]
- Hata, K.; Wakita, M.; Fujiwara, K.; Kawano, K. Development of a reconstruction method of prior austenite microstructure using EBSD data of martensite. Nippon. Steel Sumitomo Met. Tech. Rep. 2017, 114, 26–31. [Google Scholar]
- Cheng, Y.; Crassidis, J.L.; Oshman, Y. Averaging quaternions. J. Guid. Control Dyn. 2007, 30, 1193–1197. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Bate, P.S.; Hurley, P.J. Orientation average of electron backscattered diffraction data. J. Microsc. 2001, 201, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A, Edge preservation near triple junctions during orientation averaging of EBSP data. Scr. Mater. 2004, 50, 1097–1101. [CrossRef]
- Cho, J.H.; Rollet, A.D.; Oh, K.H. Determination of a mean orientation in electron backscatter diffraction measurements. Metall. Mater. Trans. A 2005, 36, 3427–3438. [Google Scholar] [CrossRef]
- Chen, D.; Kuo, J.C. Bilateral filter-based orientation smoothing of EBSD data. Ultramicroscopy 2010, 110, 1297–1305. [Google Scholar] [CrossRef]
- Nyyssönen, T. Quenching and Partitioning of High-Aluminum Steels. Ph.D. Thesis, Tamper University of Technology, Tampere, Finland, 2017. Available online: http://urn.fi/URN:ISBN:978-952-15-3896-4 (accessed on 17 December 2023).
- Nyyssönen, T.; Isakov, M.; Peura, P.; Kuokkala, V.T. Iterative determination of the orientation relationship between austenite and martensite from a large amount of grain pair misorientations. Metall. Mater. Trans. A 2016, 47, 2587–2590. [Google Scholar] [CrossRef]
- Gockel, J.; Sheridan, L.; Narra, S.P.; Klingbeil, N.W.; Beuth, J. Trends in solidification grain size and morphology for additive manufacturing of Ti-6Al-4V. JOM 2017, 69, 2706–2710. [Google Scholar] [CrossRef]
- Bermingham, M.; StJohn, D.; Easton, M.; Yuan, L.; Dargusch, M. Revealing the mechanisms of grain nucleation and formation during additive manufacturing. JOM 2020, 72, 1065–1073. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Xie, Y.; Li, H.; Zeng, C.; Xu, M.; Zhang, H. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy. J. Mater. Res. Technol. 2024, 177, 44–58. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Nabaa, A.; Hojjatzadeh, S.M.H.; Young, Z.A.; Chen, L. Controlling process instability for defect lean metal additive manufacturing. Nat. Commun. 2022, 13, 1079. [Google Scholar] [CrossRef]
- Pauza, J.G.; Tayon, W.A.; Rollett, A.D. Computer simulation of microstructure development in powder-bed additive manufacturing with crystallographic texture. Model. Simul. Mater. Sci. Eng. 2021, 29, 055019. [Google Scholar] [CrossRef]
Element | α | β | α/β |
---|---|---|---|
Titanium | 1459 | 1424 | 1.02 |
Aluminum | 185 | 221 | 0.83 |
Vanadium | 278 | 308 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, S.I.; Lenthe, W.C.; Nowell, M.M. Parent Grain Reconstruction in an Additive Manufactured Titanium Alloy. Metals 2024, 14, 51. https://doi.org/10.3390/met14010051
Wright SI, Lenthe WC, Nowell MM. Parent Grain Reconstruction in an Additive Manufactured Titanium Alloy. Metals. 2024; 14(1):51. https://doi.org/10.3390/met14010051
Chicago/Turabian StyleWright, Stuart I., William C. Lenthe, and Matthew M. Nowell. 2024. "Parent Grain Reconstruction in an Additive Manufactured Titanium Alloy" Metals 14, no. 1: 51. https://doi.org/10.3390/met14010051
APA StyleWright, S. I., Lenthe, W. C., & Nowell, M. M. (2024). Parent Grain Reconstruction in an Additive Manufactured Titanium Alloy. Metals, 14(1), 51. https://doi.org/10.3390/met14010051