The Triaxiality Effect on Damage Evolution in Al-2024 Tensile Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Geometries
2.2. Experimental Procedure
2.3. Damage Models
2.3.1. Uncoupled Damage Models
2.3.2. Lemaitre Coupled Damage Model
2.4. Hardening Model
2.5. Fem Analysis
3. Experimental and Numerical Results
3.1. Experimental Results
3.2. Uncoupled Damage Analysis
3.2.1. Hardening Response
3.2.2. Damage Models Characterization Using the Smoothed Round Bar
3.2.3. Damage Evaluation in Notched Bars
3.3. Coupled Damage Analysis
3.3.1. Damage Characterization
3.3.2. Damaged Hardening Response
3.3.3. Damage Evaluation in Notched Bars
3.4. Triaxiality Evolution
4. Discussion
4.1. Experimental Results
4.2. Damage and Hardening Parameters
4.3. Triaxiality and Damage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McClintock, F. A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 1968, 35, 363–371. [Google Scholar] [CrossRef]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the ductile enlargement of voids in triaxial stress field. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef]
- Ganjiani, M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle. Eur. J. Mech. Solids 2020, 84, 104048. [Google Scholar] [CrossRef]
- Hancock, J.; Mackenzie, A. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 1976, 24, 147–160. [Google Scholar] [CrossRef]
- Dunand, M.; Mohr, D. On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles. J. Mech. Phys. Solids 2011, 59, 1374–1394. [Google Scholar] [CrossRef]
- Achouri, M.; Germain, G.; Dal Santo, P.; Saidane, D. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater. Des. 2013, 50, 207–222. [Google Scholar] [CrossRef]
- Gholipour, H.; Biglari, F.; Nikbin, K. Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests. Int. J. Mech. Sci. 2019, 164, 105170. [Google Scholar] [CrossRef]
- Bonora, N.; Gentile, D.; Pirondi, A.; Newaz, G. Ductile damage evolution under triaxial state of stress: Theory and experiments. Int. J. Plast. 2005, 21, 981–1007. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Dai, Q.; Liu, X.; Liu, L.; Zhang, Z. Effect of Stress Triaxiality on Plastic Damage Evolution and Failure Mode for 316L Notched Specimen. Metals 2019, 9, 1067. [Google Scholar] [CrossRef]
- Zhong, J.; Xu, T.; Guan, K.; Huang, L. Evaluation of Ductile Damage Parameters under High Stress Triaxiality. Exp. Mech. 2017, 57, 501–504. [Google Scholar] [CrossRef]
- Yu, F.; Ben Jar, P.-Y.; Hendry, M. Constitutive analysis of pressure-insensitive metals under axisymmetric tensile loading: A stress triaxiality-dependent plasticity damage model. Int. J. Mech. Sci. 2018, 142–143, 21–32. [Google Scholar] [CrossRef]
- Zhu, Y.; Engelhardt, M.; Pan, Z. Simulation of ductile fracture initiation in steels using a stress triaxiality–shear stress coupled model. Acta Mech. Sin. 2019, 35, 600–614. [Google Scholar] [CrossRef]
- Coppola, T.; Cortese, L.; Folgarait, P. The effect of stress invariants on ductile fracture limit in steels. Eng. Fract. Mech. 2009, 76, 1288–1302. [Google Scholar] [CrossRef]
- Thompson, R.D.; Hancock, J.W. Ductile failure by void nucleation, growth and coalescence. Int. J. Fract. 1984, 26, 99–112. [Google Scholar] [CrossRef]
- Drucker, D.C.; Rice, R. Plastic deformation in brittle and ductile fracture. Eng. Fract. Mech. 1970, 1, 577–602. [Google Scholar] [CrossRef]
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of metals I: Brittle and ductile fracture. Acta Mater. 2016, 107, 424–483. [Google Scholar] [CrossRef]
- Cao, T.-S.; Gachet, J.-M.; Montmitonnet, P.; Bouchard, P.-O. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality. Eng. Fract. Mech. 2014, 124–125, 80–96. [Google Scholar] [CrossRef]
- Kiran, R.; Khandelwal, K. A triaxiality and Lode parameter dependent ductile fracture criterion. Eng. Fract. Mech. 2014, 128, 121–138. [Google Scholar] [CrossRef]
- Malcher, L.; Andrade Pires, F.M.; César de Sá, J.M.A. An extended GTN model for ductile fracture under high and low stress triaxiality. Int. J. Plast. 2014, 54, 193–228. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On the cut-off value of negative triaxiality for fracture. Eng. Fract. Mech. 2005, 72, 1049–1069. [Google Scholar] [CrossRef]
- Kubík, P.; Šebek, F.; Hůlka, J.; Petruška, J. Calibration of ductile fracture criteria at negative stress triaxiality. Int. J. Mech. Sci. 2016, 108–109, 90–103. [Google Scholar] [CrossRef]
- Brünig, M.; Gerke, S.; Schmidt, M. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. Int. J. Plast. 2018, 102, 70–82. [Google Scholar] [CrossRef]
- Bonora, N.; Testa, G.; Ruggiero, A.; Iannitti, G.; Gentile, D. Continuum damage mechanics modelling incorporating stress triaxiality effect on ductile damage initiation. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 1755–1768. [Google Scholar] [CrossRef]
- Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Gentile, D. Stress triaxiality effect on void nucleation in ductile metals. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 1473–1486. [Google Scholar] [CrossRef]
- Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Gentile, D. Stress triaxiality effect on cleavage fracture stress. Theor. Appl. Fract. Mech. 2020, 109, 102689. [Google Scholar] [CrossRef]
- Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Forouzan, M.R.; Mohseni mofidi, S.; Barlat, F. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel. Mater. Sci. Eng. 2015, 644, 210–217. [Google Scholar] [CrossRef]
- Khan, A.; Liu, H. A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int. J. Plast. 2012, 35, 1–12. [Google Scholar] [CrossRef]
- Driemeier, L.; Brünig, M.; Micheli, G.; Alves, M. Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 2010, 42, 207–217. [Google Scholar] [CrossRef]
- Kim, H.; Kobayashi, T.; Niimoni, M.; Hagiwara, T.; Sakamoto, T. Effect of stress triaxiality on fracture behaviour of Al-Li system alloy. Mater. Sci. Forum 1996, 217–222, 1499–1504. [Google Scholar] [CrossRef]
- Brünig, M.; Chyra, O.; Albrecht, D.; Driemeier, L.; Alves, M. A ductile damage criterion at various stress triaxialities. Int. J. Plast. 2008, 24, 1731–1755. [Google Scholar] [CrossRef]
- Zhang, K.; Badreddine, H.; Hfaiedh, N.; Saanouni, K.; Liu, J. Enhanced CDM model accounting of stress triaxiality and Lode angle for ductile damage prediction in metal forming. Int. J. Damage Mech. 2021, 30, 260–282. [Google Scholar] [CrossRef]
- Li, H.; Fu, M.; Lu, J.; Yang, H. Ductile fracture: Experiments and computations. Int. J. Plast. 2011, 27, 147–180. [Google Scholar] [CrossRef]
- Yu, S.; Cai, L.; Yao, D.; Bao, C. Critical ductile fracture criterion based on first principal stress and stress triaxiality. Theor. Appl. Fract. Mech. 2020, 109, 102696. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Kou, L.; Zhao, W.; Tuo, X.; Wang, G.; Sun, C. Effect of stress triaxiality on fracture failure of 6061 aluminium alloy. J. Mech. Eng. Sci. 2020, 14, 6961–6970. [Google Scholar] [CrossRef]
- Cao, T.-S.; Gaillac, A.; Montmitonnet, P.; Bouchard, P.-O. Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical–experimental analysis of fracture experiments conducted on a zirconium alloy. Int. J. Solids Struct. 2013, 50, 3984–3999. [Google Scholar] [CrossRef]
- Takuda, H.; Mori, K.; Hatta, N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J. Mater. Process. Technol. 1999, 95, 116–121. [Google Scholar] [CrossRef]
- Canales, C.; Boman, R.; Ponthot, J.-P. Application of uncoupled damage models to predict ductile fracture in sheet metal blanking. Key Eng. Mater. 2016, 725, 483–488. [Google Scholar] [CrossRef]
- Komori, K. Effect of ductile fracture criteria on chevron crack formation and evolution in drawing. Int. J. Mech. Sci. 2003, 45, 141–160. [Google Scholar] [CrossRef]
- Yue, Z.; Cao, K.; Badreddine, H.; Saanouni, K.; Gao, J. Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model. Int. J. Mech. Sci. 2019, 153–154, 1–9. [Google Scholar] [CrossRef]
- Gruben, G.; Hopperstad, O.; Børvik, T. Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL. Int. J. Mech. Sci. 2012, 62, 133–146. [Google Scholar] [CrossRef]
- Kiran, R.; Khandelwal, K. Experimental Studies and Models for Ductile Fracture in ASTM A992 Steels at High Triaxiality. J. Struct. Eng. 2014, 140, 04013044. [Google Scholar] [CrossRef]
- Peng, Z.; Zhao, H.; Li, X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality. Int. J. Plast. 2021, 145, 103057. [Google Scholar] [CrossRef]
- Bonora, N. A nonlinear CDM model for ductile failure. Eng. Fract. Mech. 1997, 58, 11–28. [Google Scholar] [CrossRef]
- McAllen, P.J.; Phelan, P. Ductile fracture by central bursts in drawn 2011 aluminium wire. Int. J. Fract. 2005, 135, 19–33. [Google Scholar] [CrossRef]
- Celentano, D.; Chaboche, J.L. Experimental and numerical characterization of damage evolution in steels. Int. J. Plast. 2007, 23, 1739–1762. [Google Scholar] [CrossRef]
- Freudenthal, A.M. The Inelastic Behaviour of Engineering Materials and Structures; John Wiley and Sons: New York, NY, USA, 1950. [Google Scholar]
- Cockcroft, M.; Latham, D. Ductility and workability of metals. J. Inst. Met. 1968, 96, 33–39. [Google Scholar]
- Chaouadi, R.; De Mester, P.; Vandermeulen, W. Damage work as ductile fracture criterion. Int. J. Fract. 1994, 66, 155–164. [Google Scholar] [CrossRef]
- Ayada, M.; Higashino, T.; Mori, K. Central bursting in extrusion of inhomogeneous materials. Adv. Technol. Plast. 1987, 1, 553–558. [Google Scholar]
- Gonzalez, A.; Celentano, D.; Cruchaga, M. Assessment of ductile failure models in single-pass wire drawing processes. Int. J. Damage Mech. 2017, 27, 1291–1306. [Google Scholar] [CrossRef]
- Wang, T.-J. Unified CDM model and local criterion for ductile fracture—I. Unified CDM model for ductile fracture. Eng. Fract. Mech. 1992, 42, 177–183. [Google Scholar] [CrossRef]
- Chandrakanth, S.; Pandey, P.C. An isotropic damage model for ductile material. Eng. Fract. Mech. 1995, 50, 457–465. [Google Scholar] [CrossRef]
- La Rosa, G.; Mirone, G.; Risitano, A. Effect of stress triaxiality corrected plastic flow on ductile damage evolution in the framework of continuum damage mechanics. Eng. Fract. Mech. 2001, 68, 417–434. [Google Scholar] [CrossRef]
- Chow, C.L.; Wang, J. An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech. 1987, 27, 547–558. [Google Scholar] [CrossRef]
- Gonzalez, A.; Celentano, D.; Cruchaga, M. Bilinear damage evolution in AA2011 wire drawing processes. Int. J. Damage Mech. 2021. [Google Scholar] [CrossRef]
- ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Huang, Y. Accurate dilatation rate for spherical voids in triaxial stress fields. J. Appl. Mech. 1991, 58, 1084–1086. [Google Scholar] [CrossRef]
- Celentano, D. A large strain thermoviscoplastic formulation for the solidification of S.G. cast iron in a green sand mould. Int. J. Plast. 2001, 17, 1623–1658. [Google Scholar] [CrossRef]
Rice and Tracey model | (2) | |
Modified Chaouadi model | (3) | |
Ayada et al. model | (4) | |
González et al. model | (5) |
Parameter | h | Q | b | |
Value | 265.9 MPa | 118.0 MPa | 202.4 MPa | 14.2 |
Model | Center | Edge | Average |
---|---|---|---|
Rice and Tracey | |||
Chaouadi (modified) [MPa] | |||
Ayada et al. | |||
González et al. |
NRB R8 | NRB R2.8 | |||||
---|---|---|---|---|---|---|
Model | Center | Edge | Average | Center | Edge | Average |
Rice and Tracey | ||||||
Chaouadi (modified) | ||||||
Ayada et al. | ||||||
González et al. |
0.001 | 0.07 | 0.24 | 0.31 | 0.28 | 1.50 |
Parameter | h | Q | b | |
Value | 265.9 MPa | 118.0 MPa | 264.6 MPa | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, Á.; Celentano, D.; Cruchaga, M.; Ponthot, J.-P. The Triaxiality Effect on Damage Evolution in Al-2024 Tensile Samples. Metals 2024, 14, 1103. https://doi.org/10.3390/met14101103
González Á, Celentano D, Cruchaga M, Ponthot J-P. The Triaxiality Effect on Damage Evolution in Al-2024 Tensile Samples. Metals. 2024; 14(10):1103. https://doi.org/10.3390/met14101103
Chicago/Turabian StyleGonzález, Álvaro, Diego Celentano, Marcela Cruchaga, and Jean-Philippe Ponthot. 2024. "The Triaxiality Effect on Damage Evolution in Al-2024 Tensile Samples" Metals 14, no. 10: 1103. https://doi.org/10.3390/met14101103
APA StyleGonzález, Á., Celentano, D., Cruchaga, M., & Ponthot, J. -P. (2024). The Triaxiality Effect on Damage Evolution in Al-2024 Tensile Samples. Metals, 14(10), 1103. https://doi.org/10.3390/met14101103