An Investigation of Thermomechanical Behavior in Laser Hot Wire Directed Energy Deposition of NAB: Finite Element Analysis and Experimental Validation
Abstract
:1. Introduction
2. Methods and Materials
2.1. LHW DED Process
2.2. NAB Alloys
2.3. Experimental Design
2.4. Finite Element Modeling
2.4.1. Thermal Model
2.4.2. Mechanical Model
2.4.3. Hypothesis on Stress Relaxation Due to Phase Transformations
2.4.4. Laser Path Model
2.4.5. Numeric Implementation
3. Results and Discussion
3.1. Single Layer
3.2. Multiple Layers
3.3. Runtime
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imran, M.M.; Che Idris, A.; De Silva, L.C.; Kim, Y.B.; Abas, P.E. Advancements in 3D Printing: Directed Energy Deposition Techniques, Defect Analysis, and Quality Monitoring. Technologies 2024, 12, 86. [Google Scholar] [CrossRef]
- Pangsrivinij, S.; McGuffin-Cawley, J.; Quinn, R.; Narayanan, B.; Zhang, S.; Denney, P. Calculation of energy balance and efficiency in Laser Hot-Wire (LHW) cladding process. In Proceedings of the 2016 International Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; IEEE: New York, NY, USA, 2016; pp. 217–222. [Google Scholar]
- Halder, R.; Pistorius, P.C.; Blazanin, S.; Sardey, R.P.; Quintana, M.J.; Pierson, E.A.; Verma, A.K.; Collins, P.C.; Rollett, A.D. The effect of interlayer delay on the heat accumulation, microstructures, and properties in laser hot wire directed energy deposition of Ti-6Al-4V single-wall. Materials 2024, 17, 3307. [Google Scholar] [CrossRef] [PubMed]
- Shiqing, Z.; Peng, W.; Zhenhua, F.; Jiguo, S. Numerical simulation of wire temperature field for prediction of wire transfer stability in laser hot wire welding. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics, Miami, FL, USA, 7 October 2013; AIP Publishing: Melville, NY, USA, 2013; pp. 294–301. [Google Scholar]
- Peng, W.; Jiguo, S.; Shiqing, Z.; Gang, W. Control of wire transfer behaviors in hot wire laser welding. Int. J. Adv. Manuf. Technol. 2016, 83, 2091–2100. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, G.; Wei, S.; Li, C.; Rong, Y. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method. Front. Mech. Eng. 2016, 11, 242–249. [Google Scholar] [CrossRef]
- Liu, S.; Liu, W.; Harooni, M.; Ma, J.; Kovacevic, R. Real-time monitoring of laser hot-wire cladding of Inconel 625. Opt. Laser Technol. 2014, 62, 124–134. [Google Scholar] [CrossRef]
- Zhang, Z.; Kong, F.; Kovacevic, R. Laser hot-wire cladding of Co-Cr-W metal cored wire. Opt. Lasers Eng. 2020, 128, 105998. [Google Scholar] [CrossRef]
- Tyralla, D.; Seefeld, T. Higher deposition rates in laser hot wire cladding (LHWC) by beam oscillation and thermal control: Erhöhung der Abschmelzleistung beim Laser-Heißdrahtbeschichten mittels Strahloszillation und temperaturbasierter Regelung. In Production at the Leading Edge of Technology, Proceedings of the 9th Congress of the German Academic Association for Production Technology (WGP), Hamburg, Germany, 30 September–2 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 401–409. [Google Scholar]
- Akbari, M.; Ding, Y.; Kovacevic, R. Process development for a robotized laser wire additive manufacturing. In Proceedings of the International Manufacturing Science and Engineering Conference, Zhuhai, China, 11–12 March 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 50732, p. V002T01A015. [Google Scholar]
- Ding, Y.; Akbari, M.; Kovacevic, R. Process planning for laser wire-feed metal additive manufacturing system. Int. J. Adv. Manuf. Technol. 2018, 95, 355–365. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, G.; McGuffin-Cawley, J.D.; Narayanan, B.; Zhang, S.; Schwam, D.; Kottman, M.; Rong, Y.K. Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J. Mater. Process. Technol. 2016, 235, 171–186. [Google Scholar] [CrossRef]
- Liu, W.; Ma, J.; Liu, S.; Kovacevic, R. Experimental and numerical investigation of laser hot wire welding. Int. J. Adv. Manuf. Technol. 2015, 78, 1485–1499. [Google Scholar] [CrossRef]
- Liang, L.; Hu, R.; Wang, J.; Huang, A.; Pang, S. A thermal fluid mechanical model of stress evolution for wire feeding-based laser additive manufacturing. J. Manuf. Process. 2021, 69, 602–612. [Google Scholar] [CrossRef]
- Yao, M.; Kong, F.; Tong, W. A 3D finite element analysis of thermally induced residual stress distribution in stainless steel coatings on a mild steel by laser hot wire cladding. Int. J. Adv. Manuf. Technol. 2023, 126, 759–776. [Google Scholar] [CrossRef]
- Arcos, C.; Ramos-Grez, J.; Sancy, M.; La Fé-Perdomo, I.; Setchi, R.; Guerra, C. Suitability of nickel aluminium bronze alloy fabricated by laser powder bed fusion to be used in the marine environment. Corros. Sci. 2024, 226, 111656. [Google Scholar] [CrossRef]
- Orzolek, S.M.; Semple, J.K.; Fisher, C.R. Influence of processing on the microstructure of nickel aluminum bronze (NAB). Addit. Manuf. 2022, 56, 102859. [Google Scholar] [CrossRef]
- Morshed-Behbahani, K.; Bishop, D.P.; Nasiri, A. A review of the corrosion behavior of conventional and additively manufactured nickel-aluminum bronze (NAB) alloys: Current status and future challenges. Mater. Horiz. 2023, 10, 5391–5435. [Google Scholar] [CrossRef]
- Cai, X.; Yang, M.; Rui, Y.; Wang, Z.; Zhou, J.; Xue, F. Investigation of mechanical and corrosion behavior of multi-pass nickel-aluminum bronze fabricated through wire-arc directed energy deposition. Addit. Manuf. 2024, 80, 103967. [Google Scholar] [CrossRef]
- Xu, C.; Peng, Y.; Chen, L.Y.; Chen, Z.W.; Zhang, T.Y.; Cheng, J.J.; Wang, K.H. Tailoring microstructure via heat treatment to improve the corrosion resistance of directed energy deposited nickel-aluminum bronze alloy. J. Mater. Res. Technol. 2023, 25, 5210–5226. [Google Scholar] [CrossRef]
- Shakil, S.I.; Dharmendra, C.; Shalchi-Amirkhiz, B.; Mohammadi, M.; Haghshenas, M. Interplay between microstructure, micromechanical, and tensile properties in wire arc additive manufactured nickel-aluminum bronze: As-built and heat treated. Materialia 2023, 32, 101919. [Google Scholar] [CrossRef]
- Hatala, G.W.; Wang, Q.; Reutzel, E.W.; Fisher, C.R.; Semple, J.K. A thermo-mechanical analysis of laser hot wire additive manufacturing of NAB. Metals 2021, 11, 1023. [Google Scholar] [CrossRef]
- B150/B150M-19; Standard Specification for Aluminum Bronze Rod, Bar, and Shapes. ASTM International: West Conshohocken, PA, USA, 2019.
- C95800; Class: Bronzes, Copper-Aluminum-Iron and Copper-Aluminum-Iron-Nickel Alloys (Aluminium Bronzes). The Copper Development Association Inc.: McLean, VA, USA, 2020.
- Foteinopoulos, P.; Papacharalampopoulos, A.; Stavropoulos, P. On thermal modeling of Additive Manufacturing processes. CIRP J. Manuf. Sci. Technol. 2018, 20, 66–83. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Pisarek, B. Model of Cu-Al-Fe-Ni Bronze Crystallization. Arch. Foundry Eng. 2013, 13, 72–79. [Google Scholar] [CrossRef]
- Brezina, P. Heat treatment of complex aluminium bronzes. Int. Met. Rev. 1982, 27, 77–120. [Google Scholar] [CrossRef]
- Dai, H.; Francis, J.; Withers, P. Prediction of residual stress distributions for single weld beads deposited on to SA508 steel including phase transformation effects. Mater. Sci. Technol. 2010, 26, 940–949. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Michaleris, P. Effect of stress relaxation on distortion in additive manufacturing process modeling. Addit. Manuf. 2016, 12, 51–59. [Google Scholar] [CrossRef]
- Michaleris, P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem. Anal. Des. 2014, 86, 51–60. [Google Scholar] [CrossRef]
- Gouge, M.F.; Heigel, J.C.; Michaleris, P.; Palmer, T.A. Modeling forced convection in the thermal simulation of laser cladding processes. Int. J. Adv. Manuf. Technol. 2015, 79, 307–320. [Google Scholar] [CrossRef]
- Li, C.; Denlinger, E.R.; Gouge, M.F.; Irwin, J.E.; Michaleris, P. Numerical verification of an Octree mesh coarsening strategy for simulating additive manufacturing processes. Addit. Manuf. 2019, 30, 100903. [Google Scholar] [CrossRef]
Stage | Wire Feed Rate | Laser Power | Laser Travel Speed | Stage Duration |
---|---|---|---|---|
Pre-Heating | 0 mm/s | 9 kW | - | 0.2 s |
Pre-Filling | 37.5 mm/s | 9 kW | - | 0.1 s |
Main Deposition | 60 mm/s | 9 kW | 7 mm/s | Determined by bead length |
End-Filling | 45 mm/s | 6.5 kW | - | 0.1 s |
End-Delay | 0 mm/s | 2 kW | - | 0.5 s |
Current Supplied | 100 A |
Average Voltage | 2.26 V |
Wire Diameter | 1.14 mm |
Wire Length with Current Applied | 22.5 mm |
Composition (wt.%) | Cu | Fe | Ni | Al | Mn | Si |
---|---|---|---|---|---|---|
MIL-CuNiAl in experiment | 81.7 | 3.29 | 5.40 | 8.67 | 0.81 | 0.11 |
MIL-E-23765/3A | Remainder | 3.00–5.00 | 4.00–5.50 a | 8.50–9.50 | 0.60–3.50 | − b |
(type MIL-CuNiAl) |
Temperature | Thermal Diffusivity | Specific Heat | Thermal Conductivity |
---|---|---|---|
[°C] | [m2/s] | [J/(kg·K)] × 103 | [W/(m·K)] × 102 |
23 | 0.104 | 0.433 | 0.341 |
50 | 0.112 | 0.440 | 0.371 |
100 | 0.126 | 0.453 | 0.430 |
200 | 0.147 | 0.473 | 0.525 |
300 | 0.163 | 0.477 | 0.586 |
400 | 0.178 | 0.525 | 0.704 |
500 | 0.189 | 0.538 | 0.766 |
600 | 0.197 | 0.478 | 0.822 |
700 | 0.179 | 0.639 | 0.865 |
800 | 0.157 | 0.705 | 0.839 |
900 | 0.130 | 0.936 | 0.714 |
950 | 0.116 | 0.736 | 0.643 |
Temperature | Coeff. of Thermal Expansion | Young’s Modulus | Yield Strength |
---|---|---|---|
[°C] | [1/°C] | [GPa] | [MPa] |
23 | 11.2 | 122 | 410 |
100 | 19.6 | 128 | 399 |
200 | 22.0 | 127 | 393 |
300 | 23.7 | 104 | 389 |
400 | 25.5 | 92.7 | 320 |
500 | 27.0 | 73.4 | 167 |
600 | 28.5 | 35.9 | 109 |
700 | 30.3 | 21.7 | 57.9 |
800 | 31.5 | 8.27 | 25.2 |
900 | 33.8 | n/a | n/a |
Parameter | Value | Unit |
---|---|---|
Density | 7.550 | kg/m3 |
Latent Heat of Fusion | 230 | kJ/kg |
Solidus Temperature | 1043 | °C |
Liquidus Temperature | 1060 | °C |
Electrical Conductivity | 7 | % IACS |
Electrical Resistivity | 2.428 | Ω · m |
Elements per laser diameter | 3 |
Minimum number of fine layers beneath heat source | 8 |
Number of refinement levels | 3 |
Dimensionless time tolerance | 2.5 |
Maximum allowable time increment | 10 s |
Minimum allowable time increment | s |
Model | Number of Elements | Number of Nodes |
---|---|---|
Single-layer simulation | 3964 | 5168 |
Multilayer simulation | 5500 | 6932 |
Convection (W/(m2 K)) | Laser Absorptivity | TC1 Max %Error | TC2 Max %Error | TC3 Max %Error |
---|---|---|---|---|
30 | 0.15 | 12% | 11% | 15% |
0.20 | 6% | 7% | 8% | |
0.25 | 15% | 14% | 14% | |
35 | 0.15 | 10% | 15% | 17% |
0.18 | 4% | 10% | 9% | |
0.19 | 3% | 5% | 5% | |
0.20 | 4% | 9% | 9% | |
0.25 | 12% | 14% | 16% | |
40 | 0.15 | 11% | 17% | 20% |
0.20 | 4% | 12% | 13% | |
0.25 | 14% | 15% | 18% |
Build Case | TC1 Max % Error | TC2 Max % Error | TC3 Max % Error | Final Distortion % Error |
---|---|---|---|---|
Single-layer | 3% | 5% | 5% | 12% |
Multilayer | 3% | 6% | 2% | 3.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatala, G.W.; Reutzel, E.; Wang, Q. An Investigation of Thermomechanical Behavior in Laser Hot Wire Directed Energy Deposition of NAB: Finite Element Analysis and Experimental Validation. Metals 2024, 14, 1143. https://doi.org/10.3390/met14101143
Hatala GW, Reutzel E, Wang Q. An Investigation of Thermomechanical Behavior in Laser Hot Wire Directed Energy Deposition of NAB: Finite Element Analysis and Experimental Validation. Metals. 2024; 14(10):1143. https://doi.org/10.3390/met14101143
Chicago/Turabian StyleHatala, Glenn W., Edward Reutzel, and Qian Wang. 2024. "An Investigation of Thermomechanical Behavior in Laser Hot Wire Directed Energy Deposition of NAB: Finite Element Analysis and Experimental Validation" Metals 14, no. 10: 1143. https://doi.org/10.3390/met14101143
APA StyleHatala, G. W., Reutzel, E., & Wang, Q. (2024). An Investigation of Thermomechanical Behavior in Laser Hot Wire Directed Energy Deposition of NAB: Finite Element Analysis and Experimental Validation. Metals, 14(10), 1143. https://doi.org/10.3390/met14101143