Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties
Abstract
:1. Introduction
1.1. Advantages and Classification of Laser Cutting
- (1)
- Laser fusion cutting
- (2)
- Laser oxidative cutting
- (3)
- Laser vaporization cutting
- (4)
- Laser cutting through controlled fracture
1.2. Classification of Lasers
2. Laser Cutting Parameters
3. Microstructural Evolution Induced by Laser Cutting of Titanium Alloys
4. Mechanical Properties of Cut Titanium Alloy
5. Numerical Simulations of Laser Cutting
5.1. Heat Source Model
5.1.1. Gaussian Heat Source Model
5.1.2. Rotary Gaussian Body Heat Source Model
5.1.3. Double-Ellipsoidal Heat Source Model
5.1.4. Recombination Heat Source Model
5.2. Laser Cutting Temperature and Stress Field Simulation
5.3. Simulation of Laser Cutting Quality Evaluation Parameter
6. Conclusions
- (1)
- The quality evaluation factors of laser-cut metal sheets include surface roughness, kerf width, kerf taper, HAZ width, kerf deviation, material removal rate, and slag hanging. The parameters affecting the cutting quality can be categorized into beam parameters and process parameters, and commonly studied process parameters include laser power, cutting speed, and gas pressure. The surface roughness and kerf width have often been used to evaluate the cutting quality.
- (2)
- In the laser cutting process, the auxiliary gases most commonly used consist of nitrogen, argon, and air, with nitrogen being the most prevalent. Air- and N2-assisted laser cutting can produce a thin layer of hard and brittle oxides and nitrides on the surface, leading to microcracks and reduced surface quality. In contrast, argon-assisted cutting results in a better surface quality and a smaller HAZ.
- (3)
- Martensite is a pure metal or alloy transformed from one solid phase to another solid phase. The composition of the two phases remains unchanged before and after the transformation, and only the crystal structure changes, which is called non-diffusion martensitic transformation. In the process of laser cutting of titanium alloy, the temperature in the heat-affected zone rises rapidly due to the action of a high-energy-density laser beam, reaching and exceeding the phase transition temperature of the β phase. Then rapidly cooled from above the β-phase transition temperature under the action of heat conduction of the auxiliary gases and the substrate and undergoes a non-diffusive martensitic phase transition to the acicular α’ phase. Non-diffusive martensitic phase transformation can occur in the HAZ during the laser cutting of titanium alloys.
- (4)
- The modeling and simulation of laser-cut metal sheets can better describe the characteristics of the temperature distribution and residual stress during the material removal process. Simulations have revealed that the temperature will sharply increase in regions close to the laser heat source and rapidly decay as the laser heat source moves away. After the cutting is complete, the temperature will gradually decrease, with the stress field changing to residual stress. At this point, the residual tensile stress at the cutting edge will be very high.
- (5)
- Analytical models of the quality, force, and energy balance, as well as 3D finite element models of laser cutting with heat flow coupling, have been established. These models can explain the stripe formation mechanism, allowing researchers to explore the overall mechanisms of laser cutting.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hourmand, M.; Sarhan, A.A.D.; Sayuti, M.; Hamdi, M. A Comprehensive Review on Machining of Titanium Alloys. Arab. J. Sci. Eng. 2021, 46, 7087–7123. [Google Scholar] [CrossRef]
- Li, G.; Chandra, S.; Rahman Rashid, R.A.; Palanisamy, S.; Ding, S. Machinability of additively manufactured titanium alloys: A comprehensive review. J. Manuf. Process. 2022, 75, 72–99. [Google Scholar] [CrossRef]
- Huang, Z.; Qu, H.; Deng, C.; Yang, J.J.M.R. Development and application of aerial titanium and its alloys. Mater. Rep. 2011, 25, 102–107. [Google Scholar]
- Liu, Q.M.; Zhang, Z.H.; Liu, S.F.; Yang, H.Y. Application and development of titanium alloy in aerospace and military hardware. J. Iron. Steel. Res. Int. 2015, 29, 4–10. [Google Scholar] [CrossRef]
- Pandey, A.K.; Dubey, A.K. Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Opt. Laser. Technol. 2012, 44, 1858–1865. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Laser beam machining—A review. Int. J. Mach. Tool. Manu. 2008, 48, 609–628. [Google Scholar] [CrossRef]
- Nagimova, A.; Perveen, A. A review on laser machining of hard to cut materials. Mater. Today. Proc. 2019, 18, 2440–2447. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Experimental study of Nd:YAG laser beam machining—An overview. J. Mater. Process. Technol. 2008, 195, 15–26. [Google Scholar] [CrossRef]
- Parandoush, P.; Hossain, A. A review of modeling and simulation of laser beam machining. Int. J. Mach. Tools Manuf. 2014, 85, 135–145. [Google Scholar] [CrossRef]
- Naresh; Khatak, P. Laser cutting technique: A literature review. Mater. Today 2022, 56, 2484–2489. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K. Laser Beam Machining of Titanium Alloy—A Review. Metals 2023, 13, 1536. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Alsaadawy, M.; Dewidar, M.; Said, A.; Maher, I.; Shehabeldeen, T.A. A comprehensive review of studying the influence of laser cutting parameters on surface and kerf quality of metals. Int. J. Adv. Manuf. Technol. 2024, 130, 1039–1074. [Google Scholar] [CrossRef]
- Yuan, C.G.; Pramanik, A.; Basak, A.; Prakash, C.; Shankar, S. Drilling of titanium alloy (Ti6Al4V)—A review. Mach. Sci. Technol. 2021, 25, 637–702. [Google Scholar] [CrossRef]
- Marelli, D.; Singh, S.; Nagari, S.; Subbiah, R.J.M.T.P. Optimisation of machining parameters of wire-cut EDM on super alloy materials–A review. Mater. Today. Proc. 2020, 26, 1021–1027. [Google Scholar] [CrossRef]
- Murray, J.; Zdebski, D.; Clare, A.T. Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM. J. Mater. Process. Technol. 2012, 212, 1537–1547. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Wang, K.; Xu, Y.; Hu, G. A study on machining characteristics of nickel-based alloy with short electric arc milling. Int. J. Adv. Manuf. Technol. 2019, 105, 2935–2945. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Del Val, J.; Comesaña, R.; Boutinguiza, M.; Pou, J. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Compos. Part A Appl. S 2012, 43, 1400–1409. [Google Scholar] [CrossRef]
- Thomas, D.J. Optimising laser cut-edge durability for steel structures in high stress applications. J. Constr. Steel. Res. 2016, 121, 40–49. [Google Scholar] [CrossRef]
- Hock, K.; Adelmann, B.; Hellmann, R. Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets. Phys. Proc. 2012, 39, 225–231. [Google Scholar] [CrossRef]
- Krajcarz, D. Comparison Metal Water Jet Cutting with Laser and Plasma Cutting. Proc. Eng. 2014, 69, 838–843. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Senthilkumar, V.; Singaravelu, D.L. Effect of cutting parameters on surface integrity characteristics of Ti-6Al-4V in abrasive water jet machining process. Mater. Res. Express 2019, 6, 116583. [Google Scholar] [CrossRef]
- Feng, Y.; Hsu, F.-C.; Lu, Y.-T.; Lin, Y.-F.; Lin, C.-T.; Lin, C.-F.; Lu, Y.-C.; Lu, X.; Liang, S.Y. Surface roughness prediction in ultrasonic vibration-assisted milling. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, JAMDSM0063. [Google Scholar] [CrossRef]
- Jiajia, L.; Xinggang, J.; Ze, G.; Mingliang, Z.; Deyuan, Z. Investigation of the Effect of Vibration Amplitude on the Surface Integrity in High-Speed Rotary Ultrasonic Elliptical Machining for Side Milling of Ti-6Al-4V. J. Mech. Eng. 2019, 55, 215–223. [Google Scholar] [CrossRef]
- Weiss, L.; Tazibt, A.; Aillerie, M.; Tidu, A. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling. Mater. Res. Express 2018, 5, 016528. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Boutinguiza, M.; Del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.J.M. Laser cutting: A review on the influence of assist gas. Material 2019, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Nisar, S.; Sheikh, M.A.; Li, L.; Safdar, S. The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass. Opt. Laser. Technol. 2010, 42, 1022–1031. [Google Scholar] [CrossRef]
- Tsai, C.H.; Chen, C.J. Application of iterative path revision technique for laser cutting with controlled fracture. Opt. Lasers Eng. 2004, 41, 189–204. [Google Scholar] [CrossRef]
- Yuan, Y.; Gu, C.; Huang, S.; Song, L.; Fang, F. Advances on studying optical forces: Optical manipulation, optical cooling and light induced dynamics. J. Phys. D Appl. Phys. 2020, 53, 283001. [Google Scholar] [CrossRef]
- Kwaśna, M.; Cłapińska, P.; Piosik, Z.; Barysz, K.; Dubiec, I.; Bęben, A.; Ordyniec-Kwaśnica, I. Intraoral Applications of Lasers in the Prosthetic Rehabilitation with Fixed Partial Dentures—A Narrative Review. Dent. J. 2024, 12, 164. [Google Scholar] [CrossRef]
- Abdulrahman, H.J.; Mohammed, S.B. Using the Visible Blue Light of Argon Laser Technology for Treatment of Jaundice in Infants. J. Nat. Sci. Biol. Med. 2024, 15, 184. [Google Scholar] [CrossRef]
- Jiang, Y.; Cai, Y.; Zhang, X.; Chen, L.; Zhou, X.; Chen, Y.J. A Two-Decade Bibliometric Analysis of Laser in Ophthalmology: From Past to Present. Clin. Ophthalmol. 2024, 18, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, P.; Lu, Q.; Yan, H.; Shi, H.; Yu, Z.; Sun, T.; Li, R.; Wang, Q.; Wu, Y.; et al. Application and development of blue and green laser in industrial manufacturing: A review. Opt. Laser. Technol. 2024, 170, 110202. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High-power fibre lasers. Nat. Photonics 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Salim, A.A.; Bidin, N.; Islam, S.J.S. Low power CO2 laser modified iron/nickel alloyed pure aluminum surface: Evaluation of structural and mechanical properties. Surf. Coat. Technol. 2017, 315, 24–31. [Google Scholar] [CrossRef]
- Pramanik, D.; Kuar, A.; Sarkar, S.; Mitra, S.J.O.; Technology, L. Enhancement of sawing strategy of multiple surface quality characteristics in low power fiber laser micro cutting process on titanium alloy sheet. Opt. Laser Technol. 2020, 122, 105847. [Google Scholar] [CrossRef]
- Sharma, A.; Yadava, V.J.O. Experimental analysis of Nd-YAG laser cutting of sheet materials–A review. Opt. Laser Technol. 2018, 98, 264–280. [Google Scholar] [CrossRef]
- Pramanik, D.; Roy, N.; Kuar, A.; Sarkar, S.; Mitra, S.J.O. Experimental investigation of sawing approach of low power fiber laser cutting of titanium alloy using particle swarm optimization technique. Opt. Laser Technol. 2022, 147, 107613. [Google Scholar] [CrossRef]
- Marimuthu, S.; Dunleavey, J.; Liu, Y.; Antar, M.; Smith, B.J.O. Laser cutting of aluminium-alumina metal matrix composite. Opt. Laser Technol. 2019, 117, 251–259. [Google Scholar] [CrossRef]
- Joshi, P.; Sharma, A.J.P.E. Simultaneous optimization of kerf taper and heat affected zone in Nd-YAG laser cutting of Al 6061-T6 sheet using hybrid approach of grey relational analysis and fuzzy logic. Precis. Eng. 2018, 54, 302–313. [Google Scholar] [CrossRef]
- Tamilarasan, A.; Rajamani, D.; Esakki, B. Parametric optimisation in Nd-YAG laser cutting of thin Ti-6Al-4V super alloy sheet using evolutionary algorithms. Int. J. Mater. Prod. Technol. 2018, 57, 71–91. [Google Scholar] [CrossRef]
- Perveen, A.; Molardi, C.; Fornaini, C.J.M. Applications of laser welding in dentistry: A state-of-the-art review. Micromachines 2018, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- El Aoud, B.; Boujelbene, M.; Boudjemline, A.; Bayraktar, E.; Ben Salem, S.; Elbadawi, I. Investigation of cut edge microstructure and surface roughness obtained by laser cutting of titanium alloy Ti-6Al-4V. Mater. Today 2021, 44, 2775–2780. [Google Scholar] [CrossRef]
- Shrivastava, P.K.; Pandey, A.K. Multi-objective optimization of cutting parameters during laser cutting of titanium alloy sheet using hybrid approach of genetic algorithm and multiple regression analysis. Mater. Today 2018, 5, 24710–24719. [Google Scholar] [CrossRef]
- Boudjemline, A.; Boujelbene, M.; Bayraktar, E. Surface quality of Ti-6Al-4V titanium alloy parts machined by laser cutting. Eng. Technol. Appl. Sci. Res. 2020, 10, 6062–6067. [Google Scholar] [CrossRef]
- Shanjin, L.; Yang, W. An investigation of pulsed laser cutting of titanium alloy sheet. Opt. Lasers Eng. 2006, 44, 1067–1077. [Google Scholar] [CrossRef]
- Kochergin, S.; Morgunov, Y.A.; Saushkin, B. Particularities of pulse laser cutting of thin plate titanium blanks. Procedia Eng. 2017, 206, 1161–1166. [Google Scholar] [CrossRef]
- Boujelbene, M.; El Aoud, B.; Bayraktar, E.; Elbadawi, I.; Chaudhry, I.; Khaliq, A.; Ayyaz, A.; Elleuch, Z. Effect of cutting conditions on surface roughness of machined parts in CO2 laser cutting of pure titanium. Mater. Today 2021, 44, 2080–2086. [Google Scholar] [CrossRef]
- El Aoud, B.; Boujelbene, M.; Bayraktar, E.; Ben Salem, S. Optimization of kerf quality during CO2 laser cutting of titanium alloy sheet Ti-6Al-4V and pure titanium Ti. In Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5: Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics, Greenville, SC, USA, 4–7 June 2018; Springer: Cham, Switzerland, 2019; pp. 213–219. [Google Scholar]
- Pandey, A.K.; Dubey, A.K. Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet. J. Mech. Sci. Technol. 2013, 27, 2115–2124. [Google Scholar] [CrossRef]
- Alsaadawy, M.; Dewidar, M.; Said, A.; Maher, I.; Shehabeldeen, T. Investigation of the Effect of Laser Cutting Parameters on Surface and Kerf Quality of Thick Ti–6Al–4V Alloy Sheets. Arab. J. Sci. Eng. 2024, 1–18. [Google Scholar] [CrossRef]
- Almeida, I.A.; de Rossi, W.; Lima, M.S.F.; Berretta, J.R.; Nogueira, G.E.C.; Wetter, N.U.; Vieira, N.D. Optimization of titanium cutting by factorial analysis of the pulsed Nd:YAG laser parameters. J. Mater. Process. Techol. 2006, 179, 105–110. [Google Scholar] [CrossRef]
- Rao, B.T.; Kaul, R.; Tiwari, P.; Nath, A.K. Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt. Lasers Eng. 2005, 43, 1330–1348. [Google Scholar] [CrossRef]
- Li, G.; Yao, X.; Wood, R.J.; Guo, J.; Shi, Y. Laser Surface Nitriding of Ti–6Al–4V Alloy in Nitrogen–Argon Atmospheres. Coatings 2020, 10, 1009. [Google Scholar] [CrossRef]
- Hou, H.; Wu, C.; Lv, R.; Li, Q. Study on Laser Drilling and Cutting Technology of TC4 Titanium Alloy. Appl. Lasers 2019, 39, 614–620. [Google Scholar]
- Salvador, C.A.F.; Maia, E.L.; Costa, F.H.; Escobar, J.D.; Oliveira, J.P. A compilation of experimental data on the mechanical properties and microstructural features of Ti-alloys. Sci. Data 2022, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- de Lima, M.S.F. Phase Transformations during Laser Processing of Aerospace Metallic Materials. Adv. Mater. Res. 2016, 1135, 179–201. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Pan, Z.; Liang, S.Y.; Garmestani, H. Finite element simulation of residual stress in machining of Ti-6Al-4V with a microstructural consideration. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1103–1111. [Google Scholar] [CrossRef]
- Burgers, W.G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1934, 1, 561–586. [Google Scholar] [CrossRef]
- Scintilla, L.D.; Sorgente, D.; Tricarico, L. Experimental Investigation on Fiber Laser Cutting of Ti6Al4V Thin Sheet. Adv. Mater. Res. 2011, 264–265, 1281–1286. [Google Scholar] [CrossRef]
- Aoud, B.E.; Boujelbene, M.; Bayraktar, E.; Salem, S.B.; Boudjemline, A. Experimental Comparison of the Microstructure and Surface Roughness in CO2 Laser Cutting of the Titanium Alloy Ti-6Al-4V and the Pure Titanium Ti. In Proceedings of the SEM International Congress & Exposition on Experimental and Applied Mechanics, Reno, NV, USA, 3–6 June 2019. [Google Scholar]
- Yang, C.; Fu, Y.; Liu, X.-H.; Yin, X.-H.; Liu, K.; Li, C.-B.; Zheng, X.; Yang, B.-H. Micro-Crack Formation in Laser Structuring of Titanium Alloys for Orthopedic Applications. In Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition, Columbus, OH, USA, 29 October–2 November 2022. [Google Scholar]
- Parmar, V.; Kumar, A.; Prakash, G.V.; Datta, S.; Kalyanasundaram, D. Investigation, modelling and validation of material separation mechanism during fiber laser machining of medical grade titanium alloy Ti6Al4V and stainless steel SS316L. Mech. Mater. 2019, 137, 103125. [Google Scholar] [CrossRef]
- Kalyanasundaram, D.; Shrotriya, P.; Molian, P. Fracture mechanics-based analysis for hybrid laser/waterjet (LWJ) machining of yttria-partially stabilized zirconia (Y-PSZ). Int. J. Mach. Tools Manuf. 2010, 50, 97–105. [Google Scholar] [CrossRef]
- Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R.J.C.A.A.J. Asymmetric supercapacitors based on ZnCo2O4 nanohexagons and orange peel derived activated carbon electrodes. Chem. Asian. J. 2024, 19, e202400202. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Manickam, M.; Sivasubramanian, R.J.D.T. A sol–gel derived LaCoO3 perovskite as an electrocatalyst for Al–air batteries. Dalton Trans. 2024, 53, 3713–3721. [Google Scholar] [CrossRef]
- Fujiyama, K.; Mizutani, Y.; Taniguchi, Y.; Kimachi, H. EBSD Analysis of Creep Damage Process in SUS304HTB Steel. J. Soc. Mater. Sci. Jpn. 2013, 62, 305–310. [Google Scholar] [CrossRef]
- Kobayashi, D.; Miyabe, M.; Kagiya, Y.; Sugiura, R.; Yokobori, A.T. An Assessment and Estimation of the Damage Progression Behavior of IN738LC under Various Applied Stress Conditions Based on EBSD Analysis. Metall. Mater. Trans. A 2013, 44, 3123–3135. [Google Scholar] [CrossRef]
- Fujiyama, K.; Kimachi, H.; Watanabe, Y.; Hijikuro, K.; Tsuboi, T. The concept of “EBSD strain analysis” and its application to creep and creep-fatigue damage assessment of ferritic and austenitic heat resistant steels. Strength 2011, 7, 123–135. [Google Scholar] [CrossRef]
- Kobayashi, D.; Miyabe, M.; Kagiya, Y.; Nagumo, Y.; Sugiura, R.; Matsuzaki, T.; Yokobori, A.T. Analysis of damage behaviour based on EBSD method under creep–fatigue conditions for polycrystalline nickel base superalloys. Mater. Sci. Technol. 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Kobayashi, D.; Takeuchi, T.; Achiwa, M. J0310104 Evaluation of Fatigue Crack Growth Rate by the EBSD Method. Proc. Mech. Eng. Congr. Jpn. 2015, 2015, J0310104. [Google Scholar] [CrossRef]
- Rui, S.S.; Shang, Y.B.; Su, Y.; Qiu, W.; Niu, L.S.; Shi, H.J.; Matsumoto, S.; Chuman, Y. EBSD analysis of cyclic load effect on final misorientation distribution of post-mortem low alloy steel: A new method for fatigue crack tip driving force prediction. Int. J. Fatigue 2018, 113, 264–276. [Google Scholar] [CrossRef]
- Sun, C.; Sun, J.; Chi, W.; Wang, J.; Wang, W. A method of quasi in-situ EBSD observation for microstructure and damage evolution in fatigue and dwell fatigue of Ti alloys. Int. J. Fatigue 2023, 176, 107897. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Zhang, X.; Wang, J.; Wei, S. Influence of laser cutting on TC4 titanium alloy sheet. Ordnance Mater. Sci. Eng. 2013, 36, 35–38. [Google Scholar]
- Hongling, H.; Yuhai, P.; Yukun, X.; Kai, P.; Hui, Z.J.L.T. Effect of laser cutting on fatigue performance of aircraft skin. Laser Technol. 2016, 40, 417–421. [Google Scholar]
- Germain, G.; Morel, F.; Lebrun, J.L.; Morel, A.; Huneau, B. Effect of Laser Assistance Machining on Residual Stress and Fatigue Strength for a Bearing Steel (100Cr6) and a Titanium Alloy (Ti 6Al 4V). Mater. Sci. Forum 2006, 524–525, 569–574. [Google Scholar] [CrossRef]
- Ullah, S.; Li, X.; Guo, G.; Riveiro, R.A.; Li, D.; Du, J.; Cui, L.; Wei, L.; Liu, X. Influence of the fiber laser cutting parameters on the mechanical properties and cutedge microfeatures of a AA2B06T4 aluminum alloy. Opt. Lasers Technol. 2022, 156, 108395. [Google Scholar] [CrossRef]
- Zhen, A.; Tianqi, L.; Yuanyuan, L.; Xu, D.; Hui, X.; Xiaonan, M.; Pingxiang, Z.; Jinshan, L.; University, X.A. In-Situ SEM Observations of Tensile Deformation Behavior of Ti555211 Alloy with Dual Structure. Rare Met. Mater. Eng. 2019, 48, 1584–1590. [Google Scholar]
- Wang, J. An Experimental Analysis and Optimisation of the CO2 Laser Cutting Process for Metallic Coated Sheet Steels. Int. J. Adv. Manuf. Technol. 2000, 16, 334–340. [Google Scholar] [CrossRef]
- Ramaswamy, M.T. Heat Affected Zone Studies of Thermally Cut Structural Steels. Master’s Thesis, Oregon Graduate Center, Beaverton, OR, USA, 1989. [Google Scholar]
- Bursi, O.S.; D’Incau, M.; Zanon, G.; Raso, S.; Scardi, P. Laser and mechanical cutting effects on the cut-edge properties of steel S355N. J. Constr. Steel Res. 2017, 133, 181–191. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, R.; Shi, Z.; Lin, J. An improved DIC method for full-field strain measurement in tensile tests on aluminium alloys under hot stamping conditions. Int. J. Lightweight Mater. Manuf. 2024, 7, 438–449. [Google Scholar] [CrossRef]
- Palumbo, G.; Sorgente, D.; Tricarico, L. The design of a formability test in warm conditions for an AZ31 magnesium alloy avoiding friction and strain rate effects. Int. J. Mach. Tools Manuf. 2008, 48, 1535–1545. [Google Scholar] [CrossRef]
- Hatamleh, O. Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints. Mater. Sci. Eng. A 2008, 492, 168–176. [Google Scholar] [CrossRef]
- Leitao, C.; Galvao, I.; Leal, R.M.; Rodrigues, D.M. Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Mater. Design 2012, 33, 69–74. [Google Scholar] [CrossRef]
- Nielsen, K.L.; Pardoen, T.; Tvergaard, V.; Meester, B.D.; Simar, A. Modelling of plastic flow localisation and damage development in friction stir welded 6005A aluminium alloy using physics based strain hardening law. Int. J. Solids Struct. 2010, 47, 2359–2370. [Google Scholar] [CrossRef]
- Boyce, B.L.; Reu, P.L.; Robino, C.V. The constitutive behavior of laser welds in 304L stainless steel determined by digital image correlation. Metall. Mater. Trans. A 2006, 37, 2481–2492. [Google Scholar] [CrossRef]
- Scintilla, L.D.; Tricarico, L.; Brandizzi, M.; Satriano, A.A. Nd:YAG laser weldability and mechanical properties of AZ31 magnesium alloy butt joints. J. Mater. Process. Technol. 2010, 210, 2206–2214. [Google Scholar] [CrossRef]
- Abu, S.H.K.; Cao, X.J.; Gholipour Baradari, J.; Wanjara, P.; Cuddy, J.; Birur, A.; Medraj, M. Determination of Global and Local Tensile Behaviours of Laser Welded Ti-6Al-4V Alloy. Adv. Mater. Res. 2012, 409, 859–864. [Google Scholar] [CrossRef]
- Kabir, A.S.H.; Cao, X.; Gholipour, J.; Wanjara, P.; Cuddy, J.; Birur, A.; Medraj, M. Effect of Postweld Heat Treatment on Microstructure, Hardness, and Tensile Properties of Laser-Welded Ti-6Al-4V. Metall. Mater. Trans. A 2012, 43, 4171–4184. [Google Scholar] [CrossRef]
- Scintilla, L.D.; Palumbo, G.; Sorgente, D.; Tricarico, L. Fiber laser cutting of Ti6Al4V sheets for subsequent welding operations: Effect of cutting parameters on butt joints mechanical properties and strain behaviour. Mater. Design 2013, 47, 300–308. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, G.; Li, J.J. Numerical simulation on temperature field and flow field of molten pool in laser cladding. Surf. Technol. 2023, 52, 67–84. [Google Scholar]
- Pavelic, V.; Tanbakuchi, R.; Uyehara, O.A.; Myers, P.S. Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Weld. Res. Suppl. 1969, 48, 296–305. [Google Scholar]
- Jiang, H.-J.; Xu, W.-L.; Gao, N.-H.; Jia, C.-S.; Wang, X.-G. 3D thermoelastoplastic study of FML structure under the action of a moving Gaussian-distributed laser heat source. Thin-Walled Struct. 2022, 179, 109759. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, H.; Wang, Y.; Zhang, X. New Heat Source Model in Numerical Simulation of High Energy Beam Welding. China Weld. 2004, 25, 91–94. [Google Scholar]
- Unni, A.K.; Vasudevan, M. Determination of heat source model for simulating full penetration laser welding of 316 LN stainless steel by computational fluid dynamics. Mater. Today 2021, 45, 4465–4471. [Google Scholar] [CrossRef]
- Ou, D.; Wang, F.; Zhao, S.; Zheng, J.; Liu, T. Welding Deformations and Stress Simulations Control of Large-scale Complex Structures. Chin. J. Mech. Eng. 2018, 29, 616. [Google Scholar]
- Kik, T.; Garašić, I.; Perić, M.; Landek, D.; Jurica, M.; Tonković, Z. Modifications of the heat source model in numerical analyses of the metal-cored arc welding process. Energy 2024, 302, 131811. [Google Scholar] [CrossRef]
- Arif, A.; Yilbas, B.; Aleem, B.A. Laser cutting of thick sheet metals: Residual stress analysis. Opt. Lasers Technol. 2009, 41, 224–232. [Google Scholar] [CrossRef]
- Yilbas, B.S. Laser cutting of thick sheet metals: Effects of cutting parameters on kerf size variations. J. Mater. Process. Technol. 2008, 201, 285–290. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Akhtar, S.S. Laser Cutting of Alloy Steel: Three-Dimensional Modeling of Temperature and Stress Fields. Adv. Manuf. Process. 2011, 26, 104–112. [Google Scholar] [CrossRef]
- Wang, R.R.; Chang, C.T. Thermal modeling of laser welding for titanium dental restorations. J. Prosthet. Dent. 1998, 79, 335–341. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Sundar, J.S.; Sundararajan, G.; Joshi, S. Geometrical features and metallurgical characteristics of Nd: YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets. J. Mater. Process. Technol. 2002, 127, 83–95. [Google Scholar] [CrossRef]
- Kofstad, P. High-temperature oxidation of titanium. J. Less Common Met. 1967, 12, 449–464. [Google Scholar] [CrossRef]
- Abakians, H.; Modest, M.F. Evaporative cutting of a semitransparent body with a moving CW laser. J. Heat Transf. 1988, 110, 924–930. [Google Scholar] [CrossRef]
- Di Pietro, P.; Yao, Y. A new technique to characterize and predict laser cut striations. Int. J. Mach. Tools Manuf. 1995, 35, 993–1002. [Google Scholar] [CrossRef]
- Li, Y.; Latham, W.P.; Kar, A. Lumped parameter model for multimode laser cutting. Opt. Lasers Eng. 2001, 35, 371–386. [Google Scholar] [CrossRef]
- Aloke, R.; Girish, V.; Scrutton, R.F.; Molian, P.A. A model for prediction of dimensional tolerances of laser cut holes in mild steel thin plates. Int. J. Mach. Tools Manuf. 1997, 37, 1069–1078. [Google Scholar] [CrossRef]
- Poprawe, R.; König, W. Modeling, Monitoring and Control in High Quality Laser Cutting. CIRP Ann.-Manuf. Technol. 2001, 50, 137–140. [Google Scholar] [CrossRef]
- Yilba, B.S.; Sahin, A.Z. Oxygen assisted laser cutting mechanism—A laminar boundary layer approach including the combustion process. Opt. Laser Technol. 1995, 27, 175–184. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, E.J.; Lee, C.M. A study on the heat affected zone and machining characteristics of difficult-to-cut materials in laser and induction assisted machining. J. Manuf. Process. 2020, 57, 499–508. [Google Scholar] [CrossRef]
- Rozzi, J.C.; Pfefferkorn, F.E.; Incropera, F.P.; Shin, Y.C. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories. Int. J. Heat Mass Transf. 2000, 43, 1409–1424. [Google Scholar] [CrossRef]
- Yang, J.; Sun, S.; Brandt, M.; Yan, W. Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J. Mater. Process. Technol. 2010, 210, 2215–2222. [Google Scholar] [CrossRef]
- Kardas, O.O.; Keles, O.; Akhtar, S.; Yilbas, B.S. Laser cutting of rectangular geometry in 2024 aluminum alloy: Thermal stress analysis. Opt. Laser. Technol. 2014, 64, 247–256. [Google Scholar] [CrossRef]
- Gu, D.; He, B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput. Mater. Sci. 2016, 117, 221–232. [Google Scholar] [CrossRef]
- Samanta, A.; Teli, M.; Singh, R. Experimental characterization and finite element modeling of the residual stresses in laser-assisted mechanical micromachining of Inconel 625. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 1735–1751. [Google Scholar] [CrossRef]
- Mittal, V.; Sharma, P.; Patel, V.K.; Pandey, V.; Kumar, V. Numerical Study of Laser Cutting of Titanium Alloy (TI-6Al-4V). Appl. Mech. Mater. 2014, 592, 579–583. [Google Scholar] [CrossRef]
- Shamlooei, M.; Zanon, G.; Valli, A.; Bison, P.; Bursi, O.S. Investigation of thermal behaviour of structural steel S235N under laser cutting process: Experimental, analytical, and numerical studies. Eng. Struct. 2022, 269, 114754. [Google Scholar] [CrossRef]
- Zhai, C.; Xu, J.; Li, Y.; Hou, Y.; Liu, Q. Study on surface heat-affected zone and surface quality of Ti-6Al-4V alloy by laser-assisted micro-cutting. Int. J. Adv. Manuf. Technol. 2020, 109, 2337–2352. [Google Scholar] [CrossRef]
- Ding, H.; Shin, Y.C. A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel. J. Manuf. Sci. Eng. 2012, 134, 051014. [Google Scholar] [CrossRef]
- Fu, C.H.; Sealy, M.P.; Guo, Y.; Wei, X.T. Finite element simulation and experimental validation of pulsed laser cutting of nitinol. J. Manuf. Process. 2015, 19, 81–86. [Google Scholar] [CrossRef]
- Wee, L.M.; Li, L. An analytical model for striation formation in laser cutting. Appl. Surf. Sci. 2005, 247, 277–284. [Google Scholar] [CrossRef]
- Tani, G.; Tomesani, L.; Campana, G.; Fortunato, A. Quality factors assessed by analytical modelling in laser cutting. Thin Solid Films 2004, 453, 486–491. [Google Scholar] [CrossRef]
- Kovalev, O.; Yudin, P.; Zaitsev, A. Modeling of flow separation of assist gas as applied to laser cutting of thick sheet metal. Appl. Math. Model. 2009, 33, 3730–3745. [Google Scholar] [CrossRef]
- Kar, A.; Scott, J.; Latham, W. Theoretical and experimental studies of thick-section cutting with a chemical oxygen–iodine laser (COIL). J. Laser Appl. 1996, 8, 125–133. [Google Scholar] [CrossRef]
- Atsuta, T.; Yasuda, K.; Matsumoto, T.; Sakurai, T.; Okado, H. COIL and the Material Processing. In Proceedings of the Conference on Lasers and Electro-Optics, Amsterdam, The Netherlands, 28 August–2 September 1994; p. CThI52. [Google Scholar]
- Mullick, S.; Madhukar, Y.K.; Roy, S.; Nath, A.K. An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model. Int. J. Mach. Tools Manuf. 2015, 91, 62–75. [Google Scholar] [CrossRef]
Beam Parameter | Process Parameter |
---|---|
Laser power (Pu) | Auxiliary gas and pressure (p) |
Wavelength (λ) | Cutting speed (v) |
Spot size (r) | Cutting distance (D) |
Types of beams | Nozzle diameter (R) |
Pulse width (PW) Pulse frequency (Pf) Pulse energy (Q) | Defocusing quantity (f) |
Author | Laser | Material | Method | Process Parameters | Auxiliary Gas | Cutting Quality Evaluation Parameter | Optimal Combination of Parameters |
---|---|---|---|---|---|---|---|
Aoud et al. [43] | CO2 laser cutting | 3 mm Ti-6Al-4V | TM | Pu, v, p | N2 | Ra | Pu = 3 kW, v = 2400 mm/min, and p = 2 bar |
Shrivastava et al. [44] | Pulsed Nd:YAG laser cutting | 1.6 mm Ti-6Al-4V | GA and MRM | PW, Pf, v, p | Air | KW, KT | p = 9.959 bar, PW = 1.447 ms, Pf = 6 Hz, v = 5.06 mm/min |
Boudjemline et al. [45] | CO2 laser cutting | 5 mm Ti-6Al-4V | FFD | Pu = 2000 W, v, p | N2 | Ra | v = 2250–2400 mm/min, p = 12–14 bar |
Shanjin et al. [46] | pulsed Nd:YAG laser cutting | 1 mm TC1 | SFE | Q, PW, v, p | air, Ar, N2 | HAZ | Medium-Q, high-PW, high-v, and high-p, Ar |
Kochergin et al. [47] | fiber laser cutting | 2 mm BT1-0 | SFE | v, Pf, p, f | Ar | KW, Ra, S | v = 3 mm/min, Pf = 100–200 Hz, p = 1–1.2 MPa, f = 0 mm |
Kumar et al. [5] | pulsed Nd:YAG laser cutting | 1.4 mm Ti-6Al-4V | TM | p, v, PW, Pf | N2 | Ra, KT | Low-PW, low-Pf, high-v, medium-p |
Boujelbene et al. [48] | CO2 laser cutting | 2 mm pure Ti | TM | v, Pu, p | N2 | Ra | v = 2400 mm/min, Pu = 2 kW, p = 14 bar |
El Aoud B et al. [49] | CO2 laser cutting | 3 mm Ti-6Al-4V and Ti | TM | Pu, v, p | N2 | KW | Pu = 2 kW, v = 2400 mm/min, p = 8 bar |
Pandey et al. [50] | pulsed Nd:YAG laser cutting | 1.4 mm Ti-6Al-4V | NNM and GA | PW, Pf, v, p | Ra | p = 50.04 N/2, v = 0.278 mm/min, Pf = 13.9995 Hz, PW = 1.7 ms | |
Tamilarasan et al. [41] | pulsed Nd:YAG laser cutting | 1 mm Ti-6Al-4V | RD and GA | PW, Q, v, p | KD, MRR | PW = 1.789 ms, Q = 4.574 J, v = 10 mm/min, p = 7.674 kg/cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, C.; Xu, W.; Zhang, X.; Ren, K.; Wang, S.; Hua, Q. Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties. Metals 2024, 14, 1152. https://doi.org/10.3390/met14101152
Zhang Y, Wang C, Xu W, Zhang X, Ren K, Wang S, Hua Q. Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties. Metals. 2024; 14(10):1152. https://doi.org/10.3390/met14101152
Chicago/Turabian StyleZhang, Ya, Chunyu Wang, Wentao Xu, Xianfeng Zhang, Kerong Ren, Shuai Wang, and Qing Hua. 2024. "Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties" Metals 14, no. 10: 1152. https://doi.org/10.3390/met14101152
APA StyleZhang, Y., Wang, C., Xu, W., Zhang, X., Ren, K., Wang, S., & Hua, Q. (2024). Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties. Metals, 14(10), 1152. https://doi.org/10.3390/met14101152