Influence of Centerline Segregation Region on the Hydrogen Embrittlement Susceptibility of API 5L X80 Pipeline Steels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructural Characterization and Microhardness Investigations
2.3. Hydrogen Permeation Tests
2.4. Hydrogen Embrittlement Susceptibility Tests
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Electrochemical Hydrogen Permeation Test
3.3. Slow Strain Rate Tests
3.4. Fracture Morphology
4. Conclusions
- The thicker plate exhibited a centerline segregation region (CSR) with an average microhardness value approximately 25% higher than that of the overall plate (including both segregated and non-segregated areas). The CSR constituted approximately 1.05% of the cross-sectional area.
- Larger αp grain sizes and fewer ferrite–FCA (ferrite–carbide aggregates) interfaces in the thicker plate facilitated greater diffusivity in the non-segregated area, as grain boundaries serve as high-energy trapping sites.
- The centerline segregation region presented an important role in the hydrogen embrittlement resistance of the thicker plate due to its high hardness microconstituents and higher percentages of carbon, manganese, sulfur, and phosphorus. Except for mid-thickness samples, there was a tendency for greater resistance to hydrogen embrittlement among the specimens obtained from the thicker plate, evidencing a determinant role of the hardness to hydrogen embrittlement susceptibility.
- The specimens tested in the air presented ductile morphology, with the classical dimples featured, while the samples tested in hydrogen solution presented fracture behavior with brittle and ductile surfaces. The brittle area had quasi-cleavage planes and secondary cracks.
- The fracture process initiation occurred primarily through mechanisms aligned with the hydrogen-induced decohesion (HID) model. The presence of hydrogen was found to significantly decrease the cohesive strength at grain boundaries, promoting crack initiation at sites where localized brittle particles are present. Additionally, hydrogen redistribution under applied stress further influenced the fracture process through the hydrogen-enhanced localized plasticity (HELP) model. By reducing the elastic interactions between dislocations, hydrogen lowered the critical shear stress required for dislocation movement. Once the critical hydrogen concentration was reached in specific susceptible areas, localized fractures occurred.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Ai, S.; Long, M.; Wan, L.; Li, Y.; Jia, D.; Duan, H.; Chen, D. Quantitative Study on Hydrogen Concentration–Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel Based on Hydrogen Permeation Kinetics. Metals 2024, 14, 763. [Google Scholar] [CrossRef]
- Jemblie, L.; Hagen, A.B.; Hagen, C.H.M.; Nyhus, B.; Alvaro, A.; Wang, D.; Koren, E.A.; Johnsen, R.; Zhang, Z.; Yamabe, J.; et al. Safe Pipelines for Hydrogen Transport. Int. J. Hydrogen Energy, 2024, in press. [CrossRef]
- Li, L.; Song, B.; Cui, X.; Liu, Z.; Wang, L.; Cheng, W. Effects of Finish Rolling Deformation on Hydrogen-Induced Cracking and Hydrogen-Induced Ductility Loss of High-Vanadium TMCP X80 Pipeline Steel. Int. J. Hydrogen Energy 2020, 45, 30828–30844. [Google Scholar] [CrossRef]
- Beidokhti, B.; Dolati, A.; Koukabi, A.H. Effects of Alloying Elements and Microstructure on the Susceptibility of the Welded HSLA Steel to Hydrogen-Induced Cracking and Sulfide Stress Cracking. Mater. Sci. Eng. A 2009, 507, 167–173. [Google Scholar] [CrossRef]
- Ramirez, M.F.G.; Hernández, J.W.C.; Ladino, D.H.; Masoumi, M.; Goldenstein, H. Effects of Different Cooling Rates on the Microstructure, Crystallographic Features, and Hydrogen Induced Cracking of API X80 Pipeline Steel. J. Mater. Res. Technol. 2021, 14, 1848–1861. [Google Scholar] [CrossRef]
- Li, H.; Niu, R.; Li, W.; Lu, H.; Cairney, J.; Chen, Y.S. Hydrogen in Pipeline Steels: Recent Advances in Characterization and Embrittlement Mitigation. J. Nat. Gas Sci. Eng. 2022, 105, 104709. [Google Scholar] [CrossRef]
- Huang, F.; Liu, S.; Liu, J.; Zhang, K.; Xi, T. Sulfide Stress Cracking Resistance of the Welded WDL690D HSLA Steel in H2S Environment. Mater. Sci. Eng. A 2014, 591, 159–166. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, Z.; Yao, X.; Wang, X.; Lu, M.; Zhang, L.; Qiao, L. Comparative Study on Hydrogen Induced Cracking Sensitivity of Two Commercial API 5L X80 Steels. Int. J. Press. Vessel. Pip. 2022, 196, 104620. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, C.; Liu, C.; Wang, C.; Xu, X.; Zhang, J.; Li, Y. Effects of Natural Gas Impurities on Hydrogen Embrittlement Susceptibility and Hydrogen Permeation of X52 Pipeline Steel. Eng. Fail. Anal. 2024, 159, 108111. [Google Scholar] [CrossRef]
- Koren, E.; Yamabe, J.; Lu, X.; Hagen, C.M.H.; Wang, D.; Johnsen, R. Hydrogen Diffusivity in X65 Pipeline Steel: Desorption and Permeation Studies. Int. J. Hydrogen Energy 2024, 61, 1157–1169. [Google Scholar] [CrossRef]
- Haq, A.J.; Muzaka, K.; Dunne, D.P.; Calka, A.; Pereloma, E.V. Effect of Microstructure and Composition on Hydrogen Permeation in X70 Pipeline Steels. Int. J. Hydrogen Energy 2013, 38, 2544–2556. [Google Scholar] [CrossRef]
- Kisaka, Y.; Senior, N.; Gerlich, A. A Study on Sulfide Stress Cracking Susceptibility of GMA Girth Welds in X80 Grade Pipes. Metall. Mater. Trans. A 2018, 50, 249–256. [Google Scholar] [CrossRef]
- Qin, W.; Thomas, A.; Cheng, Z.Q.; Gu, D.; Li, T.L.; Zhu, W.L.; Szpunar, J.A. Key Factors Affecting Hydrogen Trapping at the Inclusions in Steels: A Combined Study Using Microprint Technique and Theoretical Modeling. Corros. Sci. 2022, 200, 110239. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.A.; Masoumi, M. Different Aspects of Hydrogen Diffusion Behavior in Pipeline Steel. J. Mater. Res. Technol. 2023, 24, 4762–4783. [Google Scholar] [CrossRef]
- Park, G.T.; Koh, S.U.; Jung, H.G.; Kim, K.Y. Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel. Corros. Sci. 2008, 50, 1865–1871. [Google Scholar] [CrossRef]
- Cabrini, M. Hydrogen Embrittlement and Diffusion in High Strength Low Alloyed Steels with Different Microstructures. Insight-Mater. Sci. 2019, 2, 182. [Google Scholar] [CrossRef]
- Nnoka, M.; Alaso Jack, T.; Szpunar, J. Effects of Different Microstructural Parameters on the Corrosion and Cracking Resistance of Pipeline Steels: A Review. Eng. Fail. Anal. 2024, 159, 108065. [Google Scholar] [CrossRef]
- Tamehiro, H.; Takeda, T.; Matsuda, S.; Yamamoto, K.; Okumura, N. Effect of Accelerated Cooling after Controlled Rolling on the Hydrogen Induced Cracking Resistance of Line Pipe Steel. Trans. Iron Steel Inst. Jpn. 1985, 25, 982–988. [Google Scholar] [CrossRef]
- Fujda, M. Centerline Segregation of Continuously Cast Slabs Influence on Microstructure and Fracture Morphology. J. Met. Mater. Miner. 2005, 15, 45–51. [Google Scholar]
- Guo, F.; Liu, W.; Wang, X.; Misra, R.D.K.; Shang, C. Controlling Variability in Mechanical Properties of Plates by Reducing Centerline Segregation to Meet Strain-Based Design of Pipeline Steel. Metals 2019, 9, 749. [Google Scholar] [CrossRef]
- Shant, R.; Kyada, T.; Goyal, R.; Kathayat, T.S. Understanding the Delamination and Its Effect on Charpy Impact Energy in Thick Wall Linepipe Steel. J. Mater. Metall. Eng. 2014, 4, 31–39. [Google Scholar]
- Mohtadi-Bonab, M.A.; Szpunar, J.A.; Collins, L.; Stankievech, R. Evaluation of Hydrogen Induced Cracking Behavior of API X70 Pipeline Steel at Different Heat Treatments. Int. J. Hydrogen Energy 2014, 39, 6076–6088. [Google Scholar] [CrossRef]
- Su, L.; Li, H.; Lu, C.; Li, J.; Simpson, I.; Barbaro, F.; Fletcher, L.; Zheng, L.; Mingzhuo, B.; Shen, J.; et al. Automatic Measurement of Centreline Segregation in Continuously Cast Line Pipe Steel Slabs. In Energy Materials; Springer: Cham, Switzerland, 2014; pp. 575–581. [Google Scholar] [CrossRef]
- Ohaeri, E.; Eduok, U.; Szpunar, J. Hydrogen Related Degradation in Pipeline Steel: A Review. Int. J. Hydrogen Energy 2018, 43, 14584–14617. [Google Scholar] [CrossRef]
- ASTM G148-97(2018); Standard Practice for Evaluation of Hydrogen Uptake, Permeation, and Transport in Metals by an Electrochemical Technique. ASTM International: West Conshohocken, PA, USA, 2018; Volume i, pp. 1–10. [CrossRef]
- ASTM G129-21; Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. ASTM International: West Conshohocken, PA, USA, 2021; pp. 1–7. [CrossRef]
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Material. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Krauss, G.; Thompson, S.W. Ferritic Microstructures in Continuously Cooled Low- and Ultralow-Carbon Steels. ISIJ Int. 1995, 35, 937–945. [Google Scholar] [CrossRef]
- Cizek, P.; Wynne, B.; Hodgson, P.; Muddle, B. Effect of Simulated Thermomechanical Processing on the Transformation Characteristics and Microstructure of an X80 Pipeline Steel. In Proceedings of the SHSS 2005: Proceedings of the International Conference on Super-High Strength Steels, Rome, Italy, 2–4 November 2005; Associazione Italiana di Metallurgia: Milano, Italy, 2005. [Google Scholar]
- Mishra, S.; Datta, R. Embrittlement of Steel. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 2761–2769. ISBN 978-0-08-043152-9. [Google Scholar]
- ASM International. High-Strength Low-Alloy Steels. In Alloying: Understanding the Basics, 1st ed.; Davis, J.R., Ed.; ASM International: Materials Park, OH, USA, 2001; ISBN 0-87170-744-6. [Google Scholar]
- Xue, H.B.; Cheng, Y.F. Characterization of Inclusions of X80 Pipeline Steel and Its Correlation with Hydrogen-Induced Cracking. Corros. Sci. 2011, 53, 1201–1208. [Google Scholar] [CrossRef]
- Liu, M.A.; Rivera-Díaz-del-Castillo, P.E.J.; Barraza-Fierro, J.I.; Castaneda, H.; Srivastava, A. Microstructural Influence on Hydrogen Permeation and Trapping in Steels. Mater. Des. 2019, 167, 107605. [Google Scholar] [CrossRef]
- Stroe, M.E. Hydrogen Embrittlement of Ferrous Materials. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2006. [Google Scholar]
- Oriani, R.A. A Mechanistic Theory of Hydrogen Embrittlement of Steels. Berichte Der Bunsenges. Für Phys. Chem. 1972, 76, 848–857. [Google Scholar] [CrossRef]
- Hardie, D.; Charles, E.A.; Lopez, A.H. Hydrogen Embrittlement of High Strength Pipeline Steels. Corros. Sci. 2006, 48, 4378–4385. [Google Scholar] [CrossRef]
- ANSI/NACE MR0175-2021/ISO 15156:2020; Petroleum and Natural Gas Industries—Materials for Use in H2S-Containing Environments in Oil and Gas Production. Association for Materials Protection and Performance (AMPP): Houston, TX, USA; International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Taira, T.; Tsukada, K.; Kobayashi, Y.; Inagaki, H.; Watanabe, T. Sulfide Corrosion Cracking of Linepipe for Sour Gas Service. Corrosion 1981, 37, 5–16. [Google Scholar] [CrossRef]
- Troiano, A.R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals: (1959 Edward De Mille Campbell Memorial Lecture). Metallogr. Microstruct. Anal. 2016, 5, 557–569. [Google Scholar] [CrossRef]
- Garrison, W.M., Jr.; Moody, N.R. Ductile Fracture. J. Phys. Chem. Solids 1987, 48, 1035–1074. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, B.; Song, Y.; Cui, T.; Xu, P.; Zhang, L. Effects of Internal Hydrogen and Surface-Absorbed Hydrogen on the Hydrogen Embrittlement of X80 Pipeline Steel. Int. J. Hydrogen Energy 2019, 44, 22547–22558. [Google Scholar] [CrossRef]
- Godefroid, L.B.; Cândido, L.C.; Morais, W.A. Análise de Falhas; Associação Brasileira de Metalurgia, Materiais e Mineração–ABM: São Paulo, Brazil, 2012. [Google Scholar]
Identification | Thickness (mm) | Microhardness (HV0.2) | Average Grain Size (µm) |
---|---|---|---|
Plate 1 | 20.0 | 255 ± 10.54 | 3.75 ± 0.41 |
Plate 2 | 38.1 | 230 ± 23.5 | 4.19 ± 0.52 |
Main Chemical Elements Percentages (wt.%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plate 1 | C | Si | Mn | P | S | Nb | V | Ti | Cu | Cr | Mo | Ni | Fe |
0.061 | 0.288 | 1.790 | 0.018 | 0.003 | 0.037 | 0.022 | 0.012 | 0.012 | 0.154 | <0.002 | 0.032 | Bal. | |
Plate 2 | C | Si | Mn | P | S | Nb | V | Ti | Cu | Cr | Mo | Ni | Fe |
0.053 | 0.252 | 1.670 | 0.016 | 0.003 | 0.006 | 0.019 | 0.007 | 0.292 | 0.036 | 0.113 | 0.386 | Bal. |
Identification | Material | Test Environment | Axis of the Test Specimen | ø (mm) |
---|---|---|---|---|
P1.NS—air | Plate 1 | Air | Near-surface | 2.5 |
P2.NS—air | Plate 2 | Air | Near-surface | |
P1.MT—air | Plate 1 | Air | Mid-thickness | |
P2.MT—air | Plate 2 | Air | Mid-thickness | |
P1.NS—solution | Plate 1 | Solution * | Near-surface | |
P2.NS—solution | Plate 2 | Solution * | Near-surface | |
P1.MT—solution | Plate 1 | Solution * | Mid-thickness | |
P2.MT—solution | Plate 2 | Solution * | Mid-thickness |
(cm2/s) | Permeability [molH/(s·cm)] | Solubility (mol/cm3) | |
---|---|---|---|
Plate 1 | 6.17 × 10−6 ± 4.49 × 10−7 | 2.97 × 10−11 ± 5.01 × 10−12 | 4.82 × 10−6 ± 1.82 × 10−7 |
Plate 2 | 8.07 × 10−6 ± 3.48 × 10−6 | 5.71 × 10−11 ± 5.41 × 10−11 | 7.08 × 10−6 ± 1.64 × 10−6 |
Material | Condition | YS (MPa) | UTS (MPa) | ε (%) | I (ε) |
---|---|---|---|---|---|
Plate 1 (20.0 mm) | P1.MT—air | 535.2 | 641.1 | 17.39 | 0.612 |
P1.MT—solution | 528.6 | 633.2 | 6.74 | ||
P1.NS—air | 534.1 | 637.8 | 21.40 | 0.578 | |
P1.NS—solution | 529.2 | 640.8 | 9.03 | ||
Plate 2 (38.1 mm) | P2.MT—air | 453.0 | 574.9 | 21.47 | 0.632 |
P2.MT—solution | 448.6 | 465.1 | 7.91 | ||
P2.NS—air | 497.8 | 557.0 | 20.61 | 0.536 | |
P2.NS—solution | 479.6 | 563.4 | 9.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima dos Santos, M.; Filgueira de Almeida, A.; de Sousa Figueiredo, G.G.; da Silva, M.M.; Maciel, T.M.; Santos, T.F.A.; de Santana, R.A.C. Influence of Centerline Segregation Region on the Hydrogen Embrittlement Susceptibility of API 5L X80 Pipeline Steels. Metals 2024, 14, 1154. https://doi.org/10.3390/met14101154
Lima dos Santos M, Filgueira de Almeida A, de Sousa Figueiredo GG, da Silva MM, Maciel TM, Santos TFA, de Santana RAC. Influence of Centerline Segregation Region on the Hydrogen Embrittlement Susceptibility of API 5L X80 Pipeline Steels. Metals. 2024; 14(10):1154. https://doi.org/10.3390/met14101154
Chicago/Turabian StyleLima dos Santos, Mathews, Arthur Filgueira de Almeida, Guilherme Gadelha de Sousa Figueiredo, Marcos Mesquita da Silva, Theophilo Moura Maciel, Tiago Felipe Abreu Santos, and Renato Alexandre Costa de Santana. 2024. "Influence of Centerline Segregation Region on the Hydrogen Embrittlement Susceptibility of API 5L X80 Pipeline Steels" Metals 14, no. 10: 1154. https://doi.org/10.3390/met14101154
APA StyleLima dos Santos, M., Filgueira de Almeida, A., de Sousa Figueiredo, G. G., da Silva, M. M., Maciel, T. M., Santos, T. F. A., & de Santana, R. A. C. (2024). Influence of Centerline Segregation Region on the Hydrogen Embrittlement Susceptibility of API 5L X80 Pipeline Steels. Metals, 14(10), 1154. https://doi.org/10.3390/met14101154