Machine-Learning-Driven Design of High-Elastocaloric NiTi-Based Shape Memory Alloys
Abstract
:1. Introduction
2. Methods
2.1. Datasets
2.2. Features
2.3. Experiments
3. Results and Discussion
3.1. ML Model Selection and Evaluation
3.2. Validation
3.3. Material Design Toward High-Elastocaloric SMA
3.4. Experimental Validation
4. Conclusions
- (1)
- The SVR.rbf model (M1) utilized four physicochemical features (aven, en, Nsvalence, modulus compression) exhibited superior performance with an R2 = 0.860 and an RMSE = 8.472.
- (2)
- The RF model (M2), incorporating four physicochemical features (aw, dor, rcov, Valence) along with nine heat treatment parameters, achieved R² = 0.746 and RMSE = 10.422.
- (3)
- Combining the M2 model and K-Means clustering, we formulated the model M3, which achieved improved prediction performance with an R2 = 0.866 and an RMSE = 7.544.
- (4)
- Based on the M3 model, leveraging an active learning strategy through four iterations, we identified nine new NiTi-based SMAs with phase transformation entropy changes ΔS > 90 J/Kg·K−1, surpassing the majority of alloys in the original dataset.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Secretariat, O. The Montreal Protocol on Substances that Deplete the Ozone Layer; United Nations Environment Programme: Nairobi, Kenya, 2000; p. 54. [Google Scholar]
- Coulomb, D.; Dupont, J.-L.; Pichard, A. The Role of Refrigeration in the Global Economy—29 Informatory Note on Refrigeration Technologies; Instut International du Froid (IIF)-Internation Institute of Refrigeration (IIR): Paris, France, 2015. [Google Scholar]
- Franco, V.; Blázquez, J.S.; Ingale, B.; Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu. Rev. Mater. Res. 2012, 42, 305–342. [Google Scholar] [CrossRef]
- Zhang, N.; Shen, H.; Luo, L.; Liu, J.; Zhao, Z.; Zhang, L.; Sun, J.; Phan, M.H. Magnetocaloric properties of melt-extracted medium entropy gd33co33al34 microfibers. Metals 2024, 14, 880. [Google Scholar] [CrossRef]
- Valant, M. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 2012, 57, 980–1009. [Google Scholar] [CrossRef]
- Qian, S.; Geng, Y.; Wang, Y.; Ling, J.; Hwang, Y.; Radermacher, R.; Takeuchi, I.; Cui, J. A review of elastocaloric cooling: Materials, cycles and system integrations. Int. J. Refrig. 2016, 64, 1–19. [Google Scholar] [CrossRef]
- Goetzler, W.; Shandross, R.; Young, J.; Petritchenko, O.; Ringo, D.; McClive, S. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems; Navigant Consulting: Burlington, MA, USA, 2017. [Google Scholar]
- Cui, J.; Wu, Y.; Muehlbauer, J.; Hwang, Y.; Radermacher, R.; Fackler, S.; Wuttig, M.; Takeuchi, I. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 2012, 101, 073904. [Google Scholar] [CrossRef]
- Ossmer, H.; Miyazaki, S.; Kohl, M. Elastocaloric heat pumping using a shape memory alloy foil device// Elastocaloric heat pumping using a shape memory alloy foil device. In Proceedings of the 2015 Transducers–2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 726–729. [Google Scholar]
- Schmidt, M.; Kirsch, S.-M.; Seelecke, S.; Schütze, A. Elastocaloric cooling: From fundamental thermodynamics to solid state air conditioning. Sci. Technol. Built Environ. 2016, 22, 475–488. [Google Scholar] [CrossRef]
- Tušek, J.; Engelbrecht, K.; Millán-Solsona, R.; Manosa, L.; Vives, E.; Mikkelsen, L.P.; Pryds, N. The elastocaloric effect: A way to cool efficiently. Adv. Energy Mater. 2015, 5, 1500361. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Frenzel, J.; George, E.P.; Dlouhy, A.; Somsen, C.; Wagner, M.-X.; Eggeler, G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 3444–3458. [Google Scholar] [CrossRef]
- Ma, J.; Karaman, I.; Noebe, R.D. High temperature shape memory alloys. Int. Mater. Rev. 2010, 55, 257–315. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, D.; Ding, X.; Wang, Y.; Zhang, J.; Zhang, Z.; Wang, D.; Otsuka, K.; Sun, J.; Ren, X. Strain glass in doped Ti50(Ni50−xDx) (D=Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Mater. 2010, 58, 5433–5442. [Google Scholar] [CrossRef]
- Ossmer, H.; Miyazaki, S.; Kohl, M. The Elastocaloric Effect in TiNi-based Foils. Mater. Today: Proc. 2015, 2, S971–S974. [Google Scholar] [CrossRef]
- Schmidt, M.; Schütze, A.; Seelecke, S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. 2015, 54, 88–97. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, F.; Li, Z.; Jin, X.; Mañosa, L.; Planes, A. Elastocaloric effect with a broad temperature window and low energy loss in a nanograin Ti-44Ni-5Cu-1Al Ti-44Ni-5Cu-1Al (at·%) shape memory alloy. Phys. Rev. Mater. 2021, 5, 015201. [Google Scholar] [CrossRef]
- Xu, B.; Wang, C.; Wang, Q.; Yu, C.; Kan, Q.; Kang, G. Enhancing elastocaloric effect of NiTi alloy by concentration-gradient engineering. Int. J. Mech. Sci. 2023, 246, 108140. [Google Scholar] [CrossRef]
- Yeung KW, K.; Cheung KM, C.; Lu, W.W.; Chung, C.Y. Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. Eng. A 2004, 383, 213–218. [Google Scholar] [CrossRef]
- Deng, Z.; Huang, K.; Yin, H.; Sun, Q. Temperature-dependent mechanical properties and elastocaloric effects of multiphase nanocrystalline NiTi alloys. J. Alloys Compd. 2023, 938, 168547. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Y.; Li, Y.; Lin, H.; Fan, K.; Teng, X. Solid-state refrigeration of shape memory alloy-based elastocaloric materials: A review focusing on preparation methods, properties and development. Renew. Sustain. Energy Rev. 2023, 187, 113762. [Google Scholar] [CrossRef]
- Mevada, H.; Liu, B.; Gao, L.; Hwang, Y.; Takeuchi, I.; Radermacher, R. Elastocaloric cooling: A pathway towards future cooling technology. Int. J. Refrig. 2024, 162, 86–98. [Google Scholar] [CrossRef]
- Liu, S.; Kappes, B.B.; Amin-ahmadi, B.; Benafan, O.; Zhang, X.; Stebner, A.P. Physics-informed machine learning for composition–process–property design: Shape memory alloy demonstration. Appl. Mater. Today 2021, 22, 100898. [Google Scholar] [CrossRef]
- Malinov, S.; Sha, W.; McKeown, J.J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput. Mater. Sci. 2001, 21, 375–394. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019, 170, 109–117. [Google Scholar] [CrossRef]
- Liu, P.; Huang, H.; Antonov, S.; Wen, C.; Xue, D.; Chen, H.; Li, L.; Feng, Q.; Omori, T.; Su, Y. Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization. npj Comput. Mater. 2020, 6, 62. [Google Scholar] [CrossRef]
- Ohno, H. Training data augmentation: An empirical study using generative adversarial net-based approach with normalizing flow models for materials informatics. Appl. Soft Comput. 2020, 86, 105932. [Google Scholar] [CrossRef]
- Chanda, B.; Jana, P.P.; Das, J. A tool to predict the evolution of phase and Young’s modulus in high entropy alloys using artificial neural network. Comput. Mater. Sci. 2021, 197, 110619. [Google Scholar] [CrossRef]
- Lee, J.; Asahi, R. Transfer learning for materials informatics using crystal graph convolutional neural network. Comput. Mater. Sci. 2021, 190, 110314. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, C.; Zhu, H.; Chen, Q. A supervised data augmentation strategy based on random combinations of key features. Inf. Sci. 2023, 632, 678–697. [Google Scholar] [CrossRef]
- He, S.; Wang, Y.; Zhang, Z.; Xiao, F.; Zuo, S.; Zhou, Y.; Cai, X.; Jin, X. Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Mater. Des. 2023, 225, 111513. [Google Scholar] [CrossRef]
- Yang, Z.; Li, S.; Li, S.; Yang, J.; Liu, D. A two-step data augmentation method based on generative adversarial network for hardness prediction of high entropy alloy. Comput. Mater. Sci. 2023, 220, 112064. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, H.; Gao, W.; Su, W.; Sun, B.; Yi, X.; Zheng, T.; Meng, X. Data-driven high elastocaloric NiMn-based shape memory alloy optimization with machine learning. Mater. Lett. 2024, 371, 136948. [Google Scholar] [CrossRef]
- Tang, W.; Wen, S.; Hou, H.; Gong, Q.; Yi, M.; Guo, W. Phase-field simulation and machine learning of low-field magneto-elastocaloric effect in a multiferroic composite. Int. J. Mech. Sci. 2024, 275, 109316. [Google Scholar] [CrossRef]
- Raji, H.; Rad, M.; Acar, E.A.; Karaca, H.; Saedi, S. A machine learning approach to predict austenite finish temperature in quaternary NiTiHfPd SMAs. Mater. Today Commun. 2024, 38, 107847. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, L.; Zhang, K.; Zhao, Q.; Li, H.; Shi, D.; Ma, T.; Wang, C.; Wen, Q.; Tan, C. Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation. Comput. Mater. Sci. 2022, 211, 111519. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, H.; Wen, C.; Su, Y.-J.; Qian, P. Accelerating the development of multi-component Cu-Al-based shape memory alloys with high elastocaloric property by machine learning. Comput. Mater. Sci. 2020, 176, 109521. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Ren, W.; Wang, W.-L.; Li, N.; Zhang, Y.-X.; Li, X.-M.; Li, W.-H. Interpretable hardness prediction of high-entropy alloys through ensemble learning. J. Alloys Compd. 2023, 945, 169329. [Google Scholar] [CrossRef]
- Xue, D.; Balachandran, P.V.; Hogden, J.; Theiler, J.; Xue, D.; Lookman, T. Accelerated search for materials with targeted properties by adaptive design. Nat Commun 2016, 7, 11241. [Google Scholar] [CrossRef]
- Xue, D.; Xue, D.; Yuan, R.; Zhou, Y.; Balachandran, P.V.; Ding, X.; Ding, X.; Lookman, T. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 2017, 125, 532–541. [Google Scholar] [CrossRef]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Spinger: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Schapire, R.E. The boosting approach to machine learning: An overview. Nonlinear Estim. Classif. 2003, 171, 149–171. [Google Scholar]
- Khalil-Allafi, J.; Amin-Ahmadi, B. The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys. J. Alloys Compd. 2009, 487, 363–366. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Thé, J.; Yu, H. Accurate prediction of band gap of materials using stacking machine learning model. Comput. Mater. Sci. 2022, 201, 110899. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Wang, Z.; Lu, X.-G.; Avdeev, M.; Shi, S.; Wang, C.; Yu, T. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater. 2020, 195, 454–467. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, D.; Liu, S.; Zhang, P.; Zhao, W. Aluminum alloy microstructural segmentation method based on simple noniterative clustering and adaptive density-based spatial clustering of applications with noise. J. Electron. Imaging 2019, 28, 033035. [Google Scholar] [CrossRef]
- Waber, J.; Cromer, D.T. Orbital radii of atoms and ions. J. Chem. Phys. 1965, 42, 4116–4123. [Google Scholar] [CrossRef]
- Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 1932, 54, 3570–3582. [Google Scholar] [CrossRef]
- Rabe, K.M.; Phillips, J.C.; Villars, P.; Brown, I.D. Global multinary structural chemistry of stable quasicrystals, high-TC ferroelectrics, and high-Tc superconductors. Phys. Rev. B 1992, 45, 7650–7676. [Google Scholar] [CrossRef]
- Clementi, E.; Raimondi, D.L. Atomic screening constants from SCF functions. J. Chem. Phys. 1963, 38, 2686–2689. [Google Scholar] [CrossRef]
- Pettifor, D.G.; Pettifor, D. Bonding and Structure of Molecules and Solids; Clarendon Press Oxford: Oxford, UK, 1995. [Google Scholar]
Heat Treatment Process Parameter | Filling Value | |
---|---|---|
(K) | Temperature of homogenization treatment | 1123/1223/1273/1323 |
(mins) | Time of homogenization treatment | 4320 |
Ways of quenching of homogenization treatment | WQ/OQ/AC/FC | |
(K) | Temperature of solution treatment | 293 |
(mins) | Time of solution treatment | 0 |
Ways of quenching of solution treatment | AC | |
(K) | Temperature of aging treatment | 293 |
(mins) | Time of aging treatment | 0 |
Ways of quenching of aging treatment | AC |
Clusters | Models | R2 | RMSE_Train | RMSE_Test |
---|---|---|---|---|
cluster_0 | GBR_1 | 0.834 | 3.178 | 7.598 |
cluster_1 | RF | 0.812 | 2.899 | 7.998 |
cluster_2 | Lasso | 0.893 | 5.678 | 6.861 |
cluster_3 | GBR_2 | 0.895 | 1.859 | 6.393 |
all | 0.866 | 7.544 |
Element | Range |
---|---|
Ni | balance |
Ti | 45 at. %~60 at. % |
Cu, V, Mn, Fe, Hf, Pd | 0~30 at. % |
Other | 0~10 at. % |
Heat Treatment | Range | Step |
---|---|---|
1323 K | / | |
4320 min WQ | / / | |
323 K~1223 K | 300 K | |
60 min~720 min WQ/AC | 60 min / | |
323 K~1223 K | 300 K | |
30 min~420 min | 60 min | |
WQ/AC | / |
Alloys (at. %) | ΔS_pred (J/Kg·K−1) | ΔS_exp (J/Kg·K−1) |
---|---|---|
Ni49.5Ti49.5Ga1 | 89.03 | 97.91 |
Ni49Ti50Ge1 | 89.80 | 93.8 |
Ni49Ti50.5Si0.5 | 84.63 | 93.78 |
Ni49.5Ti50Te0.5 | 88.27 | 93.77 |
Ni49Ti50.5In0.5 | 84.33 | 93.41 |
Ni48.5Ti51Sb0.5 | 87.56 | 92.77 |
Ni49Ti50.5Sn0.5 | 84.60 | 92.45 |
Ni49Ti49Be2 | 91.35 | 91.48 |
Ni49Ti50.5Sc0.5 | 84.62 | 90.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Hu, Y.; Zhao, X.; Liu, Y.; Huang, H.; Su, Y. Machine-Learning-Driven Design of High-Elastocaloric NiTi-Based Shape Memory Alloys. Metals 2024, 14, 1193. https://doi.org/10.3390/met14101193
Gao Y, Hu Y, Zhao X, Liu Y, Huang H, Su Y. Machine-Learning-Driven Design of High-Elastocaloric NiTi-Based Shape Memory Alloys. Metals. 2024; 14(10):1193. https://doi.org/10.3390/met14101193
Chicago/Turabian StyleGao, Yingyu, Yunfeng Hu, Xinpeng Zhao, Yang Liu, Haiyou Huang, and Yanjing Su. 2024. "Machine-Learning-Driven Design of High-Elastocaloric NiTi-Based Shape Memory Alloys" Metals 14, no. 10: 1193. https://doi.org/10.3390/met14101193
APA StyleGao, Y., Hu, Y., Zhao, X., Liu, Y., Huang, H., & Su, Y. (2024). Machine-Learning-Driven Design of High-Elastocaloric NiTi-Based Shape Memory Alloys. Metals, 14(10), 1193. https://doi.org/10.3390/met14101193