Efficient Phase Segmentation of Light-Optical Microscopy Images of Highly Complex Microstructures Using a Correlative Approach in Combination with Deep Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Correlative Microscopy
2.3. EBSD Data as Objective Tools for Phase Identification in Complex Steels
2.4. Semantic Segmentation of EBSD Data
2.5. LOM Segmentation Pipeline
3. Results and Discussion
3.1. Semantic Segmentation Based on EBSD Data
3.2. Semantic Segmentation Based on LOM Micrographs
4. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nikas, D.; Zhang, X.; Ahlström, J. Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsion. Mater. Sci. Eng. A 2018, 737, 341–347. [Google Scholar] [CrossRef]
- Brandon, D.; Kaplan, W.D. Microstructural Characterization of Materials; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- van den Berg, F.; Kok, P.; Yang, H.; Aarnts, M.; Vink, J.J.; Beugeling, W.; Meilland, P.; Kebe, T.; Stolzenberg, M.; Krix, D.; et al. In-line characterisation of microstructure and mechanical properties in the manufacturing of steel strip for the purpose of product uniformity control. In Proceedings of the 19th World Conference on Non-Destructive Testing WCNDT, Munich, Germany, 13–17 June 2016. [Google Scholar]
- Louthan, M.R., Jr. Optical Metallography. In Materials Characterization; ASM International: Almere, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Girault, E.; Jacques, P.; Harlet, P.; Mols, K.; Van Humbeeck, J.; Aernoudt, E.; Delannay, F. Metallographic Methods for Revealing the Multiphase Microstructure of TRIP-Assisted Steels. Mater. Charact. 1998, 40, 111–118. [Google Scholar] [CrossRef]
- Samuels, L.E. Light Microscopy of Carbon Steels; ASM International: Almere, The Netherlands, 1999. [Google Scholar]
- Britz, D.; Hegetschweiler, A.; Roberts, M.; Mücklich, F. Reproducible Surface Contrasting and Orientation Correlation of Low-Carbon Steels by Time-Resolved Beraha Color Etching. Mater. Perform. Charact. 2016, 5, 20160067. [Google Scholar] [CrossRef]
- Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W. New methods for automatic quantification of microstructural features using digital image processing. Mater. Des. 2018, 141, 395–406. [Google Scholar] [CrossRef]
- Collins, P.C.; Welk, B.; Searles, T.; Tiley, J.; Russ, J.C.; Fraser, H.L. Development of methods for the quantification of microstructural features in α+β-processed α/β titanium alloys. Mater. Sci. Eng. A 2009, 508, 174–182. [Google Scholar] [CrossRef]
- Inkson, B.J. 2—Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 17–43. [Google Scholar] [CrossRef]
- Zhu, K.; Barbier, D.; Iung, T. Characterization and quantification methods of complex BCC matrix microstructures in advanced high strength steels. J. Mater. Sci. 2013, 48, 413–423. [Google Scholar] [CrossRef]
- Carneiro, Í.; Simões, S. Recent Advances in EBSD Characterization of Metals. Metals 2020, 10, 1097. [Google Scholar] [CrossRef]
- Han, B.; Wan, W.; Sun, D.; Dong, C.; Zhao, L.; Wang, H. A deep learning-based method for segmentation and quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images. J. Iron Steel Res. Int. 2022, 29, 836–845. [Google Scholar] [CrossRef]
- Szabó, P.J.; Bonyár, A. Effect of grain orientation on chemical etching. Micron 2012, 43, 349–351. [Google Scholar] [CrossRef]
- Aarnts, M.P.; Rijkenberg, R.A.; Twisk, F.A.; Wilcox, D. Microstructural Quantification of Multi-Phase Steels (Micro-Quant); European Comission: Luxembourg, 2011; Volume 10, p. 83656. [Google Scholar]
- Zajac, S.; Schwinn, V.; Tacke, K.H. Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels. Mater. Sci. Forum 2005, 500–501, 387–394. [Google Scholar]
- Mayo, U.; Isasti, N.; Jorge-Badiola, D.; Rodriguez-Ibabe, J.M.; Uranga, P. An EBSD-based methodology for the characterization of intercritically deformed low carbon steel. Mater. Charact. 2019, 147, 31–42. [Google Scholar] [CrossRef]
- Müller, M.; Britz, D.; Mücklich, F. Scale-bridging Microstructural Analysis—A Correlative Approach to Microstructure Quantification Combining Microscopic Images and EBSD Data. Pract. Metallogr. 2021, 58, 408–426. [Google Scholar] [CrossRef]
- Holm, E.A.; Cohn, R.; Gao, N.; Kitahara, A.R.; Matson, T.P.; Lei, B.; Yarasi, S.R. Overview: Computer Vision and Machine Learning for Microstructural Characterization and Analysis. Metall. Mater. Trans. A 2020, 51, 5985–5999. [Google Scholar] [CrossRef]
- Müller, M.; Stiefel, M.; Bachmann, B.-I.; Britz, D.; Mücklich, F. Overview: Machine Learning for Segmentation and Classification of Complex Steel Microstructures. Metals 2024, 14, 553. [Google Scholar] [CrossRef]
- Stuckner, J.; Harder, B.; Smith, T.M. Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset. NPJ Comput. Mater. 2022, 8, 200. [Google Scholar] [CrossRef]
- Durmaz, A.R.; Müller, M.; Lei, B.; Thomas, A.; Britz, D.; Holm, E.A.; Eberl, C.; Mücklich, F.; Gumbsch, P. A deep learning approach for complex microstructure inference. Nat. Commun. 2021, 12, 6272. [Google Scholar] [CrossRef]
- DeCost, B.L.; Francis, T.; Holm, E.A. Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 2017, 133, 30–40. [Google Scholar] [CrossRef]
- DeCost, B.L.; Lei, B.; Francis, T.; Holm, E.A. High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel. Microsc. Microanal. 2019, 25, 21–29. [Google Scholar] [CrossRef]
- Decost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 2015, 110, 126–133. [Google Scholar] [CrossRef]
- DeCost, B.L.; Jain, H.; Rollett, A.D.; Holm, E.A. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks. JOM 2017, 69, 456–465. [Google Scholar] [CrossRef]
- Kopper, A.; Karkare, R.; Paffenroth, R.C.; Apelian, D. Model selection and evaluation for machine learning: Deep learning in materials processing. Integr. Mater. Manuf. Innov. 2020, 9, 287–300. [Google Scholar] [CrossRef]
- Jacobs, R. Deep learning object detection in materials science: Current state and future directions. Comput. Mater. Sci. 2022, 211, 111527. [Google Scholar] [CrossRef]
- Müller, M.; Britz, D.; Mücklich, F. Machine Learning for Microstructure Classification: How to Assign the Ground Truth in the Most Objective Way. AMP Tech. Artic. 2021, 179, 16–21. [Google Scholar] [CrossRef]
- Bachmann, B.I.; Müller, M.; Britz, D.; Durmaz, A.R.; Ackermann, M.; Shchyglo, O.; Staudt, T.; Mücklich, F. Efficient reconstruction of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative microscopy. Front. Mater. 2022, 9, 1033505. [Google Scholar] [CrossRef]
- Laub, M.; Bachmann, B.I.; Detemple, E.; Scherff, F.; Staudt, T.; Müller, M.; Britz, D.; Mücklich, F.; Motz, C. Determination of grain size distribution of parental austenite grains through a combination of a modified contrasting method and machine learning. Pract. Metallogr. 2022, 60, 4–36. [Google Scholar] [CrossRef]
- Bachmann, B.-I.; Müller, M.; Britz, D.; Staudt, T.; Mücklich, F. Reproducible Quantification of the Microstructure of Complex Quenched and Quenched and Tempered Steels Using Modern Methods of Machine Learning. Metals 2023, 13, 1395. [Google Scholar] [CrossRef]
- Breumier, S.; Ostormujof, T.M.; Frincu, B.; Gey, N.; Couturier, A.; Loukachenko, N.; Aba-perea, P.E.; Germain, L. Leveraging EBSD data by deep learning for bainite, ferrite and martensite segmentation. Mater. Charact. 2022, 186, 111805. [Google Scholar] [CrossRef]
- Shen, C.; Wang, C.; Huang, M.; Xu, N.; van der Zwaag, S.; Xu, W. A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning. J. Mater. Sci. Technol. 2021, 93, 191–204. [Google Scholar] [CrossRef]
- Nowell, M.M.; Witt, R.A.; True, B.W. EBSD Sample Preparation: Techniques, Tips, and Tricks. Micros Today 2005, 13, 44–49. [Google Scholar] [CrossRef]
- Gazder, A.A.; Al-Harbi, F.; Spanke, H.T.; Mitchell, D.R.G.; Pereloma, E.V. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy. Ultramicroscopy 2014, 147, 114–132. [Google Scholar] [CrossRef]
- Wright, S.I.; Nowell, M.M. EBSD image quality mapping. Microsc. Microanal. 2006, 12, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.I.; Nowell, M.M.; Field, D.P. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 2011, 17, 316–329. [Google Scholar] [CrossRef]
- Mainprice, D.; Bachmann, F.; Hielscher, R.; Schaeben, H. Descriptive Tools for the Analysis of Texture Projects with Large Datasets Using MTEX: Strength, Symmetry and Components; Geological Society: London, UK, 2015; Volume 409, pp. 251–271. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Sorzano, C.O.S.; Thévenaz, P.; Unser, M. Elastic registration of biological images using vector-spline regularization. IEEE Trans. Biomed. Eng. 2005, 52, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Waterschoot, T.; Kestens, L.; De Cooman, B.C. Hot Rolling Texture Development in CMnCrSi Dual-Phase Steels. Metall. Mater. Trans. A 2002, 33, 1091–1102. [Google Scholar] [CrossRef]
- De Vincentis, N.S.; Field, D.P. Factors affecting Confidence Index in EBSD analysis. Ultramicroscopy 2021, 225, 113269. [Google Scholar] [CrossRef]
- Ryde, L. Application of EBSD to analysis of microstructures in commercial steels. Mater. Sci. Technol. 2006, 22, 1297–1306. [Google Scholar] [CrossRef]
- Li, X.; Ramazani, A.; Prahl, U.; Bleck, W. Quantification of complex-phase steel microstructure by using combined EBSD and EPMA measurements. Mater. Charact. 2018, 142, 179–186. [Google Scholar] [CrossRef]
- Zaefferer, S.; Romano, P.; Friedel, F. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels. J. Microsc. 2008, 230, 499–508. [Google Scholar] [CrossRef]
- Radwański, K. Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy. Arch. Civ. Mech. Eng. 2016, 16, 282–293. [Google Scholar] [CrossRef]
- Man, O.; Pantělejev, L.; Man, O.; Pešina, Z. EBSD analysis of phase compositions of TRIP steel on various strain levels. Mater. Eng. 2009, 16, 15–21. [Google Scholar]
- Na, S.-H.; Seol, J.-B.; Jafari, M.; Park, C.-G. A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy. Appl. Microsc. 2017, 47, 43–49. [Google Scholar] [CrossRef]
- Wu, J.; Wray, P.J.; Garcia, C.I.; Hua, M.; DeArdo, A.J. Image quality analysis: A new method of characterizing microstructures. ISIJ Int. 2005, 45, 254–262. [Google Scholar] [CrossRef]
- Kang, J.Y.; Do, H.K.; Baik, S.I.; Ahn, T.H.; Kim, Y.W.; Han, H.N.; Oh, K.H.; Lee, H.C.; Han, S.H. Phase analysis of steels by grain-averaged EBSD functions. ISIJ Int. 2011, 51, 130–136. [Google Scholar] [CrossRef]
- Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 2022, 493, 626–646. [Google Scholar] [CrossRef]
- Ostormujof, T.M.; Purohit, R.R.P.P.R.; Breumier, S.; Gey, N.; Salib, M.; Germain, L. Deep Learning for automated phase segmentation in EBSD maps. A case study in Dual Phase steel microstructures. Mater. Charact. 2022, 184, 111638. [Google Scholar] [CrossRef]
- Na, J.; Kim, S.J.; Kim, H.; Kang, S.H.; Lee, S. A unified microstructure segmentation approach via human-in-the-loop machine learning. Acta Mater. 2023, 255, 119086. [Google Scholar] [CrossRef]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020. [Google Scholar] [CrossRef]
- Qubvel/Segmentation_Models: Segmentation Models with Pretrained Backbones. Keras and TensorFlow Keras. Available online: https://github.com/qubvel/segmentation_models (accessed on 9 August 2022).
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Rodríguez, C.G.; Vitrià, J.; Mora, O. Uncertainty-based human-in-the-loop deep learning for land cover segmentation. Remote Sens. 2020, 12, 3836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachmann, B.-I.; Müller, M.; Stiefel, M.; Britz, D.; Staudt, T.; Mücklich, F. Efficient Phase Segmentation of Light-Optical Microscopy Images of Highly Complex Microstructures Using a Correlative Approach in Combination with Deep Learning Techniques. Metals 2024, 14, 1051. https://doi.org/10.3390/met14091051
Bachmann B-I, Müller M, Stiefel M, Britz D, Staudt T, Mücklich F. Efficient Phase Segmentation of Light-Optical Microscopy Images of Highly Complex Microstructures Using a Correlative Approach in Combination with Deep Learning Techniques. Metals. 2024; 14(9):1051. https://doi.org/10.3390/met14091051
Chicago/Turabian StyleBachmann, Björn-Ivo, Martin Müller, Marie Stiefel, Dominik Britz, Thorsten Staudt, and Frank Mücklich. 2024. "Efficient Phase Segmentation of Light-Optical Microscopy Images of Highly Complex Microstructures Using a Correlative Approach in Combination with Deep Learning Techniques" Metals 14, no. 9: 1051. https://doi.org/10.3390/met14091051
APA StyleBachmann, B. -I., Müller, M., Stiefel, M., Britz, D., Staudt, T., & Mücklich, F. (2024). Efficient Phase Segmentation of Light-Optical Microscopy Images of Highly Complex Microstructures Using a Correlative Approach in Combination with Deep Learning Techniques. Metals, 14(9), 1051. https://doi.org/10.3390/met14091051