The Influence of the Ratio of Circumference to Cross-Sectional Area of Tensile Bars on the Fatigue Life of Additive Manufactured AISI 316L Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Analysis of Geometries
2.2. Manufacturing and Powder Properties
Element | C | Si | Mn | Cr | Ni | Mo |
---|---|---|---|---|---|---|
Min (%) | - | - | - | 16 | 10.5 | 2 |
Max (%) | 0.03 | 1 | 2 | 18 | 14 | 3 |
Batch (%) | 0.02 | 0.6 | 0.9 | 16.9 | 12.2 | 2.6 |
Standard | ICP-OES | ICP-OES | ICP-OES | ICP-OES | ICP-OES | ISO 15350 |
2.3. Tensile Properties
2.4. Surface Roughness
2.5. Microstructure and Porosity
3. Results
3.1. High Cycle Fatigue Test
3.2. Fractography
4. Discussion
5. Conclusions
- Different ratios of area and circumference have an impact on the results of fatigue life of the tested AISI 316L stainless-steel structure specimens manufactured with additive manufacturing, as the fatigue lives of the different structure specimen geometries were different at the same stress level. Therefore, it is necessary to consider circumference as a parameter of fatigue life in such structures.
- Fractography revealed that crack initiations occurred on the outer surfaces due to surface and near-surface defects, indicating that the outer layer of the material is crucial for the fatigue behavior of additive manufactured AISI 316L stainless steel due to bending moments which cannot be avoided fully.
- The direction of fatigue crack propagation is dependent on the stress level, as, at lower levels, the crack deviates to the boundary between the melted pools during manufacturing.
- Simultaneous multiple crack initiation locations are more likely to occur at higher stress levels, as the stress intensity factor around defects reaches higher values that can allow faster crack initiation.
- Smaller differences in the achieved number of cycles between the specimens with 4 and 12 bars are at a higher stress level of loading, while at lower stress levels, the number of achieved cycles in the specimen with 4 bars was more than three times greater.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Gu, D.; Dai, D.; Ma, C.; Xia, M. Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Mater. Sci. Eng. A 2017, 682, 279–289. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022, 28, 87–100. (In English) [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Sparks, T.; Liou, F.; Newkirk, J. Aerospace applications of laser additive manufacturing. In Laser Additive Manufacturing; Brandt, M., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 351–371. [Google Scholar]
- Leal, R.; Barreiros, F.M.; Alves, L.; Romeiro, F.; Vasco, J.C.; Santos, M.; Marto, C. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 92, 1671–1676. [Google Scholar] [CrossRef]
- Dwivedi, G.; Srivastava, S.K.; Srivastava, R.K. Analysis of Barriers to Implement Additive Manufacturing Technology in the Indian Automotive Sector. Int. J. Phys. Distrib. Logist. Manag. 2017, 47, 972–991. [Google Scholar] [CrossRef]
- Salifu, S.; Desai, D.; Ogunbiyi, O.; Mwale, K. Recent development in the additive manufacturing of polymer-based com-posites for automotive structures—A review. Int. J. Adv. Manuf. Technol. 2022, 119, 6877–6891. [Google Scholar] [CrossRef]
- Böckin, D.; Tillman, A.-M. Environmental assessment of additive manufacturing in the automotive industry. J. Clean. Prod. 2019, 226, 977–987. [Google Scholar] [CrossRef]
- Stern, F.; Kleinhorst, J.; Tenkamp, J.; Walther, F. Investigation of the anisotropic cyclic damage behavior of selective laser melted AISI 316L stainless steel. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2422–2430. [Google Scholar] [CrossRef]
- Vignesh, M.; Ranjith Kumar, G.; Sathishkumar, M.; Manikandan, M.; Rajyalakshmi, G.; Ramanujam, R.; Arivazhagan, N. Development of Biomedical Implants through Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2021, 30, 4735–4744. [Google Scholar] [CrossRef]
- Oliveira, T.T.; Reis, A.C. Fabrication of dental implants by the additive manufacturing method: A systematic review. J. Prosthet. Dent. 2019, 122, 270–274. [Google Scholar] [CrossRef]
- Mohammed, M.; Gibson, I. Applications of 3D topography scanning and multi-material additive manufacturing for facial prosthesis development and production. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2016, Austin, TX, USA, 8–10 August 2016. [Google Scholar]
- Soares, B.; Ribeiro, I.; Cardeal, G.; Leite, M.; Carvalho, H.; Peças, P. Social life cycle performance of additive manufacturing in the healthcare industry: The orthosis and prosthesis cases. Int. J. Comput. Integr. Manuf. 2021, 34, 327–340. [Google Scholar] [CrossRef]
- Roland, T.; Retraint, D.; Lu, K.; Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 2006, 54, 1949–1954. [Google Scholar] [CrossRef]
- Avanzini, A. Fatigue Behavior of Additively Manufactured Stainless Steel 316L. Materials 2022, 16, 65. [Google Scholar] [CrossRef]
- D’andrea, D. Additive Manufacturing of AISI 316L Stainless Steel: A Review. Metals 2023, 13, 1370. [Google Scholar] [CrossRef]
- Shamsujjoha; Agnew, S.R.; Fitz-Gerald, J.M.; Moore, W.R.; Newman, T.A. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained. Met. Mater. Trans. A 2018, 49, 3011–3027. [Google Scholar] [CrossRef]
- Javidrad, H.; Koc, B.; Bayraktar, H.; Simsek, U.; Gunaydin, K. Fatigue performance of metal additive manufacturing: A comprehensive overview. Virtual Phys. Prototyp. 2024, 19, 2302556. [Google Scholar] [CrossRef]
- Akgun, E.; Zhang, X.; Biswal, R.; Zhang, Y.; Doré, M. Fatigue of Wire + Arc Additive Manufactured Ti-6Al-4V in Presence of Process-Induced Porosity Defects. Int. J. Fatigue 2021, 150, 106315. [Google Scholar] [CrossRef]
- Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.; Maier, H. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 2012, 48, 300–307. [Google Scholar] [CrossRef]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Zerbst, U.; Madia, M.; Bruno, G.; Hilgenberg, K. Towards a Methodology for Component Design of Metallic AM Parts Subjected to Cyclic Loading. Metals 2021, 11, 709. [Google Scholar] [CrossRef]
- Morgan, R.; Sutcliffe, C.J.; O’Neill, W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J. Mater. Sci. 2004, 39, 1195–1205. [Google Scholar] [CrossRef]
- King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- Svensson, M.; Thundal, M. Titanium alloys manufactured with Electron Beam Melting—Mechanical and Chemical properties. In Proceedings of the Materials and Processes for Medical Devices Conference, Minneapolis, MN, USA, 10–12 August 2009. [Google Scholar]
- Darvish, K.; Chen, Z.; Pasang, T. Reducing lack of fusion during selective laser melting of CoCrMo alloy: Effect of laser power on geometrical features of tracks. Mater. Des. 2016, 112, 357–366. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zuback, J.S.; De, A.; DebRoy, T. Printability of alloys for additive manufacturing. Sci. Rep. 2016, 6, 19717. [Google Scholar] [CrossRef]
- Fatemi, A.; Molaei, R.; Simsiriwong, J.; Sanaei, N.; Pegues, J.; Torries, B.; Phan, N.; Shamsaei, N. Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti-6Al-4V considering various processing and loading direction effects. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 991–1009. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A.; Phan, N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater. Des. 2019, 182, 108091. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Analysis of the Effect of Surface Roughness on Fatigue Performance of Powder Bed Fusion Additive Manufactured Metals. Theor. Appl. Fract. Mech. 2020, 108, 102638. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Bai, Q. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef]
- Gu, D.; Shen, Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009, 30, 2903–2910. [Google Scholar] [CrossRef]
- Rahmati, S.; Vahabli, E. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. Int. J. Adv. Manuf. Technol. 2015, 79, 823–829. [Google Scholar] [CrossRef]
- du Plessis, A.; Beretta, S. Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Addit. Manuf. 2020, 35, 101424. [Google Scholar] [CrossRef]
- Greitemeier, D.; Donne, C.D.; Syassen, F.; Eufinger, J.; Melz, T. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V. Mater. Sci. Technol. 2015, 32, 629–634. [Google Scholar] [CrossRef]
- Spierings, A.; Starr, T.; Wegener, K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp. J. 2013, 19, 88–94. [Google Scholar] [CrossRef]
- Afkhami, S.; Dabiri, M.; Piili, H.; Björk, T. Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusion. Mater. Sci. Eng. A 2020, 802, 140660. [Google Scholar] [CrossRef]
- Slotwinski, J.A.; Garboczi, E.J.; Hebenstreit, K.M. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 494–528. [Google Scholar] [CrossRef]
- Murakami, Y. Effects of Small Defects and Nonmetallic Inclusions on the Fatigue Strength of Metals. JSME Int. J. Ser. 1 Solid Mech. Strength Mater. 1989, 32, 167–180. [Google Scholar] [CrossRef]
- EOS GmbH. Eos M 290. Available online: https://www.eos.info/en-us/metal-solutions/metal-printers/eos-m-290#key-features (accessed on 10 June 2024).
- ISO 15350:2000; Steel and Iron—Determination of Total Carbon and Sulfur Content—Infrared Absorption Method After Combustion in an Induction Furnace. International Organization for Standardization: Geneva, Switzerland, 15 December 2000.
- M4P 316L Datasheet, M4P, Krefeld, Germany. Available online: https://www.metals4printing.com/wp-content/uploads/datasheets/de/Fe-Basis/m4p_Datenblatt_316L_DE.pdf (accessed on 12 June 2024).
- ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 3 January 2020.
- Jagarinec, D.; Gubeljak, N. Effect of Residual Stresses on the Fatigue Stress Range of a Pre-Deformed Stainless Steel AISI 316L Exposed to Combined Loading. Metals 2024, 14, 1084. [Google Scholar] [CrossRef]
- ISO 21920-3:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 3: Specification Operators. International Organization for Standardization: Geneva, Switzerland, 20 December 2021.
- Hatami, S.; Ma, T.; Vuoristo, T.; Bertilsson, J.; Lyckfeldt, O. Fatigue Strength of 316 L Stainless Steel Manufactured by Selective Laser Melting. J. Mater. Eng. Perform. 2020, 29, 3183–3194. [Google Scholar] [CrossRef]
Specimen Design | Number of Rods | Diameter (mm) | Area of Rod (mm2) | Total Area (mm2) | Total Circumference (mm) | Ratio Area/Circumference (mm) |
---|---|---|---|---|---|---|
N4 | 4 | 3.48 | A4 = 9.51 | 38.1 | 87.52 | 0.44 |
N12 | 12 | 2.01 | A12 = 3.17 | 38.1 | 151.6 | 0.25 |
Specimen | Von Mises (MPa) Global Maximum | Von Mises (MPa) Midplane Maximum | Von Mises (MPa) Midplane Minimum |
---|---|---|---|
N4 | 266.1 | 263.3 | 262.2 |
N12 | 265.9 | 264.6 | 261.1 |
Stress concentration N4/N12 (%) | 0.08 | −0.48 | 0.37 |
Specimen | Axial Stress in Loading Direction (MPa) Global Maximum | Axial Stress in Loading Direction (MPa) Midplane Maximum | Axial Stress in Loading Direction (MPa) Midplane Minimum |
---|---|---|---|
N4 | 267.5 | 263.4 | 262.1 |
N12 | 267.1 | 264.6 | 261.1 |
Stress concentration N4/N12 (%) | 0.15 | −0.46 | 0.36 |
Characteristic | d10 (µm) (xc min) (%) | d50 (µm) (xc min) (%) | d90 (µm) (xc min) (%) | −15 µm (xc min) (%) | +45 µm (xc min) (%) |
---|---|---|---|---|---|
Min | 16 | 26 | 40 | - | - |
Max | 26 | 36 | 50 | 5 | 5 |
Batch | 20 | 32 | 45 | 2.8 | 2.6 |
Standard | ISO 13322-2 | ISO 13322-2 | ISO 13322-2 | ISO 13322-2 | ISO 4497 |
Material | Ultimate Tensile Strength (MPa) | Yield Stress (MPa) | Elongation (%) | |
---|---|---|---|---|
Metal powder [41] * | 574 | 428 | 52 | |
Tensile test | min | 600 | 464 | 75 |
max | 613 | 487 | 67 |
Specimen Geometry | Average Ra (µm) | St. Dev (µm) |
---|---|---|
N4 | 9.752 | 1.076 |
N12 | 9.766 | 1.274 |
Tensile | 9.544 | 0.604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferlič, L.; Jerenec, F.; Šercer, M.; Drstvenšek, I.; Gubeljak, N. The Influence of the Ratio of Circumference to Cross-Sectional Area of Tensile Bars on the Fatigue Life of Additive Manufactured AISI 316L Steel. Metals 2024, 14, 1246. https://doi.org/10.3390/met14111246
Ferlič L, Jerenec F, Šercer M, Drstvenšek I, Gubeljak N. The Influence of the Ratio of Circumference to Cross-Sectional Area of Tensile Bars on the Fatigue Life of Additive Manufactured AISI 316L Steel. Metals. 2024; 14(11):1246. https://doi.org/10.3390/met14111246
Chicago/Turabian StyleFerlič, Luka, Filip Jerenec, Mario Šercer, Igor Drstvenšek, and Nenad Gubeljak. 2024. "The Influence of the Ratio of Circumference to Cross-Sectional Area of Tensile Bars on the Fatigue Life of Additive Manufactured AISI 316L Steel" Metals 14, no. 11: 1246. https://doi.org/10.3390/met14111246
APA StyleFerlič, L., Jerenec, F., Šercer, M., Drstvenšek, I., & Gubeljak, N. (2024). The Influence of the Ratio of Circumference to Cross-Sectional Area of Tensile Bars on the Fatigue Life of Additive Manufactured AISI 316L Steel. Metals, 14(11), 1246. https://doi.org/10.3390/met14111246