Electrochemical Analysis on Intergranular Corrosion of Austenitic Stainless Steel Weld in Molten Nitrate Salt
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Molten Nitrate Salt Exposure
2.3. Microstructure
2.4. Electrochemical Analysis
3. Experimental Results
3.1. Corrosion Behavior in a Weld Zone and a HAZ
3.2. Electrochemical Analysis Results
3.3. Microstructure Analysis
3.4. Evaluation of SIGMA Phase Using LSV
4. Conclusions
- (1)
- Using the DL-EPR technique, DOS levels of IGC can be evaluated. It is found that DOS levels at HAZs and at weld zones have increasing trends with exposure time. DOS levels at HAZs reached 60% when the exposure time was 300 h. These DOS levels were extremely high compared to those exposed to air. Meanwhile, DOS levels at weld zones were quite low, not exceeding 15% at 300 h of exposure. According to the DL-EPR technique, the pitting potential was correlated with DOS levels. IGC of stainless steel welds in molten salt depends strongly on carbide precipitation.
- (2)
- Different mechanisms of IGC sensitization have been found in weld zones. By analyzing the delta-ferrite contents, they decreased after exposure to molten salt for a prolonged period of time, with an intermetallic phase, sigma, in the weld zones. On the other hand, a method based on the LSV technique was introduced to quantify the sigma phase. As delta-ferrite transforms into sigma during exposure, sigma increases. This increase in the sigma phase leads to an increase in the DOS to IGC in the weld.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, A.; Prakash, O.; Kausher, R.; Kumar, G.; Pandey, S.; Hasnain, S.M. Parabolic trough solar collectors: A sustainable and efficient energy source. Mater. Sci. Energy Technol. 2024, 7, 99–106. [Google Scholar] [CrossRef]
- Khare, V.; Khare, C.J.; Bhuiyan, M.A. Design, optimization, and data analysis of solar-tidal hybrid renewable energy system for Hurawalhi, Maldives. Clean. Energy Syst. 2023, 6, 100088. [Google Scholar] [CrossRef]
- Mohideen, M.M.; Subramanian, B.; Sun, J.; Ge, J.; Guo, H.; Radhamani, A.V.; Ramakrishna, S.; Liu, Y. Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles. Renew. Sustain. Energy Rev. 2023, 174, 113153. [Google Scholar] [CrossRef]
- Trinh, V.; Chung, C. Renewable energy for SDG-7 and sustainable electrical production, integration, industrial application, and globalization. Clean. Eng. Technol. 2023, 15, 100657. [Google Scholar] [CrossRef]
- Khan, M.I.; Asfand, F.; Al-Ghamdi, S.G. Progress in research and technological advancements of commercial concentrated solar thermal power plants. Sol. Energy 2023, 249, 183–226. [Google Scholar] [CrossRef]
- CSTA. Blue Book of China’s Concentrating Solar Power Industry 2022; China Solar Thermal Alliance (CSTA): Beijing, China, 2022. [Google Scholar]
- Zhou, X.X.; Zhao, Q.; Zhang, Y.Q. Development Prospect and Key Technologies of China’s Energy and Power System Under the Goal of “Carbon Peaking and Carbon Neutrality”. China Power Enterp. Manag. 2021, 31, 14–17. [Google Scholar]
- Aydoğdu, G.H.; Aydinol, M.K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel. Corros. Sci. 2006, 48, 3565–3583. [Google Scholar] [CrossRef]
- Kauss, N.; Heyn, A.; Halle, T.; Rosemann, P. Detection of sensitisation on aged lean duplex stainless steel with different elec-trochemical methods. Electrochim. Acta 2019, 317, 17–24. [Google Scholar] [CrossRef]
- Kanjanaprayut, N.; Siripongsakul, T.; Promdirek, P. Intergranular Corrosion Analysis of Austenitic Stainless Steels in Molten Nitrate Salt Using Electrochemical Characterization. Metals 2024, 14, 106. [Google Scholar] [CrossRef]
- Yin, Y.; Faulkner, R.; Starr, F. Austenitic steels and alloys for power plants. In Structural Alloys for Power Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 105–152. [Google Scholar]
- Lahiri, A.K. Classification of Metallic Engineering Materials. In Applied Metallurgy and Corrosion Control: A Handbook for the Petrochemical Industry; Springer: Singapore, 2017; Volume 38, pp. 17–39. [Google Scholar]
- Kumar, N.; Pandey, C.; Kumar, P. Dissimilar welding of inconel alloys with austenitic stainless-steel: A review. J. Press. Vessel. Technol. 2023, 145, 011506. [Google Scholar] [CrossRef]
- Andersson, J.; Hosseini, V.; Neikter, M.; Pederson, R. Welding of special alloys. In Welding of Metallic Materials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 279–316. [Google Scholar]
- Arivarasu, M.; Venkatesh Kannan, M.; Devendranath Ramkumar, K.; Arivazhagan, N. Hot-corrosion resistance of dissimilar AISI 4340 and AISI 304L weldments in the molten salt environment at 600 °C. Corros. Eng. Sci. Technol. 2017, 52, 114–123. [Google Scholar] [CrossRef]
- Devendranath Ramkumar, K.; Mehta, N.; Shukla, S.; Parameswar, P.; Jaya Surya, V.; Rishi Bharadwaj, R.; Nikam, P.; Chen, X. Microstructure Evolution, Structural Integrity, and Hot Corrosion Performance of Nitrogen-Enhanced Stainless Steel Welds. J. Mater. Eng. Perform. 2019, 28, 5806–5819. [Google Scholar] [CrossRef]
- Vilchez, F.; Pineda, F.; Walczak, M.; Ramos-Grez, J. The effect of laser surface melting of stainless steel grade AISI 316L welded joint on its corrosion performance in molten solar salt. Sol. Energy Mater. Sol. Cells 2020, 213, 110576. [Google Scholar] [CrossRef]
- de Sampaio, M.T.; Furtado, A.B.; Tavares, S.S.; Pardal, J.M.; de Macêdo, M.C.; Velasco, J.A.; Araujo, A.S.; Ponzio, E.A. Sigma and Chi phases analysis in UNS S32750 superduplex stainless steel by optimized linear sweep voltammetry in alkaline medium. J. Electrochem. Soc. 2020, 167, 101507. [Google Scholar] [CrossRef]
- Haskel, H.L.; Sanches, L.S.; Ponte, H.d.A. A new methodology of nondestructive testing for quantitative evaluation of sigma phase in duplex stainless steels. Mater. Res. 2019, 22, e20180682. [Google Scholar] [CrossRef]
- Hermas, A.; Ogura, K. Effects of alloying additions on the spontaneous passivation of stainless steels containing copper at different temperatures. Electrochimi. Acta 1996, 41, 1601–1609. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.; Carboneras, M.; Coy, A.; Arrabal, R. Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions. Corros. Sci. 2007, 49, 510–525. [Google Scholar] [CrossRef]
- Tokunaga, T.; Ohtani, H.; Ågren, J. Evaluation of sensitization and self-healing in austenitic stainless steels based on simulations of Cr-depleted zones. ISIJ Int. 2011, 51, 965–968. [Google Scholar] [CrossRef]
- Bai, G.; Lu, S.; Li, D.; Li, Y. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel. Corros. Sci. 2015, 90, 347–358. [Google Scholar] [CrossRef]
- Taji, I.; Moayed, M.H.; Mirjalili, M. Correlation between sensitisation and pitting corrosion of AISI 403 martensitic stainless steel. Corros. Sci. 2015, 92, 301–308. [Google Scholar] [CrossRef]
- Calderón-Hernández, J.W.; Hincapie-Ladino, D.; Filho, E.B.M.; Magnabosco, R.; Alonso-Falleiros, N. Relation between pitting potential, degree of sensitization, and reversed austenite in a supermartensitic stainless steel. Corrosion 2017, 73, 953–960. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy; A John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wang, Q.; Chen, S.; Rong, L. δ-ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting. Metall. Mater. Trans. A 2020, 51, 2998–3008. [Google Scholar] [CrossRef]
- Schaeffler, A.L. Constitution diagram for stainless steel weld metal. Metal. Progress. 1949, 56, 680. [Google Scholar]
- Dak, G.; Pandey, C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J. Manuf. Process. 2020, 58, 377–406. [Google Scholar] [CrossRef]
- Kotecki, D.; Siewert, T. WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram. Weld. J. 1992, 71, 171–178. [Google Scholar]
- Tavares, S.; Pardal, J.; Guerreiro, J.; Gomes, A.; Da Silva, M. Magnetic detection of sigma phase in duplex stainless steel UNS S31803. J. Magn. Magn. Mater. 2010, 322, L29–L33. [Google Scholar] [CrossRef]
- Chen, T.; Weng, K.; Yang, J. The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater. Sci. Eng. A 2002, 338, 259–270. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Wu, W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels. Int. Sch. Res. Not. 2012, 2012, 732471. [Google Scholar] [CrossRef]
- dos Santos, A.G.C.; Ignácio, N.F.; Fernandes, M.S.; Baía, D.M.; Moreira, F.N.; da Silva Assis, W.L.; Rios, P.R. Computational modeling of a 3D matrix of duplex stainless steel and its ultimate strength in function of the sigma phase evolution. J. Mater. Res. Technol. 2021, 15, 2625–2632. [Google Scholar] [CrossRef]
- Ramkumar, K.D.; Singh, S.; George, J.C.; Anirudh, S.; Brahadees, G.; Goyal, S.; Gupta, S.K.; Vishnu, C.; Sharan, N.; Kalainathan, S. Effect of pulse density and the number of shots on hardness and tensile strength of laser shock peened, activated flux TIG welds of AISI 347. J. Manuf. Process. 2017, 28, 295–308. [Google Scholar] [CrossRef]
Materials | Ni | C | Mo | Mn | P | S | Si | Cr | Cu | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
ER 308L | 10.0 | 0.02 | 0.30 | 1.70 | 0.011 | 0.009 | 0.32 | 20.0 | 0.21 | – | Bal. |
ER 347 | 9.50 | 0.04 | 0.30 | 1.30 | 0.025 | 0.015 | 0.40 | 19.5 | 0.10 | 0.40 | Bal. |
Parent Metal | Filler | Layer | Current (A) | Potential (V) |
---|---|---|---|---|
AISI 304 | ER 308L | 1 | 100 | 11.9 |
2 | 120 | 12.8 | ||
3 | 100 | 11.7 | ||
AISI 304H | ER 308L | 1 | 100 | 11.0 |
2 | 120 | 12.5 | ||
3 | 110 | 12.7 | ||
AISI 321H | ER 347 | 1 | 100 | 11.9 |
2 | 120 | 12.8 | ||
3 | 100 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanjanaprayut, N.; Siripongsakul, T.; Wiman, P.; Issaard, W.; Nilsonthi, T.; Promdirek, P. Electrochemical Analysis on Intergranular Corrosion of Austenitic Stainless Steel Weld in Molten Nitrate Salt. Metals 2024, 14, 1284. https://doi.org/10.3390/met14111284
Kanjanaprayut N, Siripongsakul T, Wiman P, Issaard W, Nilsonthi T, Promdirek P. Electrochemical Analysis on Intergranular Corrosion of Austenitic Stainless Steel Weld in Molten Nitrate Salt. Metals. 2024; 14(11):1284. https://doi.org/10.3390/met14111284
Chicago/Turabian StyleKanjanaprayut, Noparat, Thamrongsin Siripongsakul, Panya Wiman, Wannapha Issaard, Thanasak Nilsonthi, and Piyorose Promdirek. 2024. "Electrochemical Analysis on Intergranular Corrosion of Austenitic Stainless Steel Weld in Molten Nitrate Salt" Metals 14, no. 11: 1284. https://doi.org/10.3390/met14111284
APA StyleKanjanaprayut, N., Siripongsakul, T., Wiman, P., Issaard, W., Nilsonthi, T., & Promdirek, P. (2024). Electrochemical Analysis on Intergranular Corrosion of Austenitic Stainless Steel Weld in Molten Nitrate Salt. Metals, 14(11), 1284. https://doi.org/10.3390/met14111284