Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review
Abstract
:1. Introduction
2. Press Hardened Steels
3. Coated PHS
3.1. PHS GI Coating
3.2. PHS GI Structural Features and Defects
4. Hydrogen Embrittlement of PHS
4.1. Hydrogen Embrittlement
4.2. Hydrogen Formation and Absorption
4.3. Hydrogen Traps
5. Corrosion Properties of PHS GI
6. Risk of HE of PHS
6.1. Non-Coated PHS
6.2. Effect of Coating on HE of PHS
7. Summary
8. Direction of Future Research
9. Conclusions
- The tensile strength of PHS depends on the composition, PAG size, presence of carbides, and processing parameters of the PHS. All those factors also influence the susceptibility to HE.
- The optimal parameters of austenitization for bare PHS and PHS GI are 880–910 °C at a dwell time of 3–10 min. Heat treatment at 120–200 °C for 10–30 min after austenitization is mandatory to release the hydrogen absorbed during the hot stamping process.
- Nb, Ti, and V carbides can suppress the susceptibility of PHS to HE.
- For PHS with a UTS of 1800 MPa, the most significant drop in the UTS was observed from 4 ppm of total hydrogen, which corresponded to 1.7 ppm of diffusible hydrogen.
- Compared to the GI coated steel, PHS GI offers increased corrosion protection. The PHS GI coating is thicker, harder, and more brittle.
- In coating defects, steel is cathodically protected by the coating when exposed to a corrosive environment.
- Hydrogen evolution caused by galvanic coupling is hindered by corrosion products, which can seal the defects. This effect is important mainly for narrow defects and depends on the corrosion environment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesch, C.; Kwiaton, N.; Klose, F.B. Advanced high strength steels (AHSS) for automotive applications− tailored properties by smart microstructural adjustments. Steel Res. Int. 2017, 88, 1700210. [Google Scholar] [CrossRef]
- Pan, Y.; Xiong, Y.; Wu, L.; Diao, K.; Guo, W. Lightweight design of an automotive battery-pack enclosure via advanced high-strength steels and size optimization. Int. J. Automot. Technol. 2021, 22, 1279–1290. [Google Scholar] [CrossRef]
- Taylor, T.; Fourlaris, G.; Clough, A. Effect of carbon and microalloy additions on hot-stamped boron steel. Mater. Sci. Technol. 2017, 33, 1964–1977. [Google Scholar] [CrossRef]
- Billur, E. Hot stamping of ultra high-strength steels. In From a Technological and Business Perspective; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Múnera, D.D.; Pic, A.; Abou-Khalil, D.; Shmit, F.; Pinard, F. Innovative press hardened steel based laser welded blanks solutions for weight savings and crash safety improvements. SAE Int. J. Mater. Manuf. 2009, 1, 472–479. [Google Scholar] [CrossRef]
- Tisza, M.; Czinege, I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Lightweight Mater. Manuf. 2018, 1, 229–238. [Google Scholar] [CrossRef]
- Cherubini, A.; Bacchi, L.; Corsinovi, S.; Beghini, M.; Valentini, R. Hydrogen Embrittlement in Advanced High Strength Steels and Ultra High Strength Steels: A new investigation approach. Procedia Struct. Integr. 2018, 13, 753–762. [Google Scholar] [CrossRef]
- Miller, W.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Autengruber, R.; Luckeneder, G.; Hassel, A.W. Corrosion of press-hardened galvanized steel. Corros. Sci. 2012, 63, 12–19. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Z.; Ngiam, Y.; Luo, Z.; Geng, Z.; Wang, J.; Zhang, Y.; Huang, M. Hydrogen Embrittlement Evaluation and Prediction in Press-Hardened Steels. Steel Res. Int. 2023, 94, 2200685. [Google Scholar] [CrossRef]
- Funakawa, Y.; Nagataki, Y. High strength steel sheets for weight reduction of automotives. JFE Tech. Rep. 2019, 24, 1–5. [Google Scholar]
- Shi, T.; Zhao, F.; Hao, H.; Liu, Z. Costs, Benefits and Range: Application of Lightweight Technology in Electric Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Diniz, F.; Morais, C.; Luiz, A.; Simplício, A.; Lima, L.; Silvério, R. Emergent Market Dealers Serviceability Challenges in Vehicles with PHS Structure; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Chen, X.; Wang, X.; Sun, Q.; Hu, Z.; Huan, P.; Yi, G.; Hiromi, N.; Di, H.; Sun, L. Improving the mechanical properties of PHS laser welded joints by adding Ni foil to suppress δ-ferrite. J. Mater. Res. Technol. 2020, 9, 5184–5193. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Sun, Q.; Yang, B.; Xiong, L.; Liu, H. Study on microstructure and properties of laser dissimilar welded joints of ultra-high strength PHS1500/PHS2000 steel. Opt. Laser Technol. 2022, 150, 107933. [Google Scholar] [CrossRef]
- Su, J.; Qiu, X.; Xing, F.; Luo, C.; Ruan, Y. Transformation of microstructure and properties of heterogeneous PHS laser welded joint of unequal thickness before and after hot forming. Mater. Lett. 2022, 306, 130918. [Google Scholar] [CrossRef]
- Valentini, R.; Tedesco, M.M.; Corsinovi, S.; Bacchi, L.; Villa, M. Investigation of mechanical tests for hydrogen embrittlement in automotive PHS steels. Metals 2019, 9, 934. [Google Scholar] [CrossRef]
- Krauss, G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A 1999, 273, 40–57. [Google Scholar] [CrossRef]
- Turetta, A.; Bruschi, S.; Ghiotti, A. Investigation of 22MnB5 formability in hot stamping operations. J. Mater. Process. Technol. 2006, 177, 396–400. [Google Scholar] [CrossRef]
- Chai, Z.; Lu, Q.; Hu, J.; Wang, L.; Wang, Z.; Wang, J.; Xu, W. Effect of retained austenite on the fracture behavior of a novel press-hardened steel. J. Mater. Sci. Technol. 2023, 135, 34–45. [Google Scholar] [CrossRef]
- Cho, L.; Bradley, P.; Lauria, D.; Connolly, M.; Seo, E.; Findley, K.; Speer, J.; Golem, L.; Slifka, A. Effects of hydrogen pressure and prior austenite grain size on the hydrogen embrittlement characteristics of a press-hardened martensitic steel. Int. J. Hydrogen Energy 2021, 46, 24425–24439. [Google Scholar] [CrossRef]
- Kurz, T.; Luckeneder, G.; Manzenreiter, T.; Schwinghammer, H.; Sommer, A. Zinc Coated Press-Hardening Steel-Challenges and Solutions; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Wan, X.; Zhao, Y.; Li, Y.; Zhou, J. The Application of Press Hardened Steel on Volvo XC90 Gen II. In Advanced High Strength Steel and Press Hardening: Proceedings of the 2nd International Conference (ICHSU2015), Changsha, China, 15–18 October 2016; World Scientific: Singapore, 2016; pp. 669–674. [Google Scholar]
- Drillet, P. Overview on Coatings Developed on Press Hardened Steels for Automotive Applications. In Advanced High Strength Steel and Press Hardening: Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018), Hefei, China, 20–22 August 2018; World Scientific: Singapore, 2019; p. 55. [Google Scholar]
- Dever, C.; Kish, J.; McDermid, J. Corrosion Properties of Hot Dip Zinc Galvanized Coatings on 22MnB5 Press Hardened Steels. In Proceedings of the GALVATECH 2017: 11th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Tokyo, Japan, 12–16 November 2017. [Google Scholar]
- Dosdat, L.; Petitjean, J.; Vietoris, T.; Clauzeau, O. Corrosion resistance of different metallic coatings on press-hardened steels for automotive. Steel Res. Int. 2011, 82, 726–733. [Google Scholar] [CrossRef]
- Reumont, G.; Vogt, J.; Iost, A.; Foct, J. The effects of an Fe–Zn intermetallic-containing coating on the stress corrosion cracking behavior of a hot-dip galvanized steel. Surf. Coat. Technol. 2001, 139, 265–271. [Google Scholar] [CrossRef]
- Rudomilova, D.; Prošek, T.; Ström, M. Hydrogen entry into steel under corrosion products. Corrosion 2021, 77, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Ronevich, J.A.; Krauss, G.; Matlock, D.K. Hydrogen embrittlement of hardened low-carbon sheet steel. ISIJ Int. 2010, 50, 294–301. [Google Scholar] [CrossRef]
- Lovicu, G.; Bottazzi, M.; D’aiuto, F.; De Sanctis, M.; Dimatteo, A.; Santus, C.; Valentini, R. Hydrogen embrittlement of automotive advanced high-strength steels. Metall. Mater. Trans. A 2012, 43, 4075–4087. [Google Scholar] [CrossRef]
- Cottis, R.A. Hydrogen Embrittlement; Elsevier: Manchester, UK, 2010; pp. 903–921. [Google Scholar]
- Jian, B.; Wang, L.; Mohrbacher, H.; Lu, H.Z.; Wang, W.J. Development of niobium alloyed press hardening steel with improved properties for crash performance. Adv. Mater. Res. 2015, 1063, 7–20. [Google Scholar] [CrossRef]
- Lin, L.; Li, B.-S.; Zhu, G.-M.; Kang, Y.-L.; Liu, R.-D. Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5. Mater. Sci. Eng. A 2018, 721, 38–46. [Google Scholar] [CrossRef]
- Järvinen, H.; Honkanen, M.; Patnamsetty, M.; Järn, S.; Heinonen, E.; Jiang, H.; Peura, P. Press hardening of zinc-coated boron steels: Role of steel composition in the development of phase structures within coating and interface regions. Surf. Coat. Technol. 2018, 352, 378–391. [Google Scholar] [CrossRef]
- Hannula, J.; Porter, D.A.; Kaijalainen, A.; Kömi, J. Evaluation of Mechanical Properties and Microstructures of Molybdenum and Niobium Microalloyed Thermomechanically Rolled High-Strength Press Hardening Steel. JOM 2019, 71, 2405–2412. [Google Scholar] [CrossRef]
- Thakkar, R. Correlation between Microstructure and Mechanical Properties of Press-Hardenable Steels for Various Quenching Rates; University of Windsor: Windsor, ON, Canada, 2022. [Google Scholar]
- Järvinen, H.; Honkanen, M.; Järvenpää, M.; Peura, P. Effect of paint baking treatment on the properties of press hardened boron steels. J. Mater. Process. Technol. 2018, 252, 90–104. [Google Scholar] [CrossRef]
- Järvinen, H. Processing and Properties of Hot-Dip Galvanized Press-Hardening Steels. Ph.D. Thesis, Tampere University, Tampere, Finland, 2021. Available online: https://trepo.tuni.fi/handle/10024/134628 (accessed on 27 January 2024).
- Zhao, Y.; Yang, D.; Qin, Z.; Chu, X.; Liu, J.; Zhao, Z. A novel hot stamping steel with superior mechanical properties and antioxidant properties. J. Mater. Res. Technol. 2022, 21, 1944–1959. [Google Scholar] [CrossRef]
- Thelning, K.-E. Steel and Its Heat Treatment; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Åkerström, P.; Oldenburg, M. Austenite decomposition during press hardening of a boron steel—Computer simulation and test. J. Mater. Process. Technol. 2006, 174, 399–406. [Google Scholar] [CrossRef]
- Tungtrongpairoj, J.; Uthaisangsuk, V.; Bleck, W. Determination of yield behaviour of boron alloy steel at high temperature. J. Met. Mater. Miner. 2009, 19, 29–38. [Google Scholar]
- Roy, S.; Karmakar, A.; Mukherjee, S.; Kundu, S.; Srivastava, D.; Chakrabarti, D. Effect of starting microstructure on austenite grain sizes developed after reheating of HSLA steel. Mater. Sci. Technol. 2014, 30, 1142–1153. [Google Scholar] [CrossRef]
- voestalpine AG. Uncoated Hot-Forming Steels for the Production of Press-Hardened Components. Available online: https://www.voestalpine.com/ultralights/en/content/download/26088/file/DB_phs_uncoated_E_151118.pdf (accessed on 4 August 2024).
- Kondratiuk, J.; Kuhn, P.; Labrenz, E.; Bischoff, C. Zinc coatings for hot sheet metal forming: Comparison of phase evolution and microstructure during heat treatment. Surf. Coat. Technol. 2011, 205, 4141–4153. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, B.-Y.; Huang, M.-D.; Cui, D. Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips. Int. J. Miner. Metall. Mater. 2014, 21, 544–555. [Google Scholar] [CrossRef]
- Järvinen, H.; Isakov, M.; Nyyssönen, T.; Järvenpää, M.; Peura, P. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels. Mater. Sci. Eng. A 2016, 676, 109–120. [Google Scholar] [CrossRef]
- Golem, L.; Cho, L.; Speer, J.G.; Findley, K.O. Influence of austenitizing parameters on microstructure and mechanical properties of Al-Si coated press hardened steel. Mater. Des. 2019, 172, 107707. [Google Scholar] [CrossRef]
- He, L.F.; Zhao, G. Research on Mechanical Properties of 22MnB5 Steel Quenched in a Steel Die. J. Shanghai Jiaotong Univ. 2011, 16, 129–132. [Google Scholar] [CrossRef]
- Barcellona, A.; Palmeri, D. Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel. Metall. Mater. Trans. A 2009, 40, 1160–1174. [Google Scholar] [CrossRef]
- Liu, Y.; Lian, J.; Han, X.; Yang, Y.; Yuan, H. Hydrogen embrittlement studies of hot-stamped boron steel with different prior austenite grain sizes. J. Mater. Sci. 2023, 58, 18187–18206. [Google Scholar] [CrossRef]
- Chai, Z.; Wang, L.; Wang, Z.; Lu, Q.; Hu, J.; Sun, W.; Wang, J.; Xu, W. Cr-enriched carbide induced stabilization of austenite to improve the ductility of a 1.7 GPa− press-hardened steel. Scr. Mater. 2023, 224, 115108. [Google Scholar] [CrossRef]
- Wei, X.; Chai, Z.; Lu, Q.; Hu, J.; Liu, Z.; Lai, Q.; Wang, J.; Xu, W. Cr-alloyed novel press-hardening steel with superior combination of strength and ductility. Mater. Sci. Eng. A 2021, 819, 141461. [Google Scholar] [CrossRef]
- Abbasi, M.; Naderi, M.; Saeed-Akbari, A. Isothermal versus non-isothermal hot compression process: A comparative study on phase transformations and structure–property relationships. Mater. Des. 2013, 45, 1–5. [Google Scholar] [CrossRef]
- Hutchinson, B.; Hagström, J.; Karlsson, O.; Lindell, D.; Tornberg, M.; Lindberg, F.; Thuvander, M. Microstructures and hardness of as-quenched martensites (0.1–0.5% C). Acta Mater. 2011, 59, 5845–5858. [Google Scholar] [CrossRef]
- Lee, J.A.; Woods, S. Hydrogen Embrittlement. 2016. Available online: https://ntrs.nasa.gov/citations/20160005654 (accessed on 15 March 2024).
- Khan, M.S.; Razmpoosh, M.; Biro, E.; Zhou, Y. A review on the laser welding of coated 22MnB5 press-hardened steel and its impact on the production of tailor-welded blanks. Sci. Technol. Weld. Join. 2020, 25, 447–467. [Google Scholar] [CrossRef]
- Betiku, O.T.; Shojaee, M.; Sherepenko, O.; Midawi, A.R.; Chertov, A.M.; Ghassemi-Armaki, H.; Maev, R.G.; Biro, E. Optimizing post-weld performance of press-hardened steel resistance spot welds by controlling fusion zone porosity. Weld. World 2022, 66, 1733–1746. [Google Scholar] [CrossRef]
- Akafuah, N.K.; Poozesh, S.; Salaimeh, A.; Patrick, G.; Lawler, K.; Saito, K. Evolution of the automotive body coating process—A review. Coatings 2016, 6, 24. [Google Scholar] [CrossRef]
- Venezuela, J.; Lim, F.Y.; Liu, L.; James, S.; Zhou, Q.; Knibbe, R.; Zhang, M.; Li, H.; Dong, F.; Dargusch, M.S. Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel. Corros. Sci. 2020, 171, 108726. [Google Scholar] [CrossRef]
- Hilditch, T.; Lee, S.; Speer, J.; Matlock, D. Response to Hydrogen Charging in High Strength Automotive Sheet Steel Products; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2003; ISSN 0148-7191. [Google Scholar]
- Ding, C.; Zhao, H.; Xu, D.; Liu, Z.; Deng, C.; Hu, B.; Song, W.; Wang, Y.; Luo, H. Revisit of bake hardening mechanism: Influence of baking on tensile properties of press hardening steels. Mater. Sci. Eng. A 2024, 896, 146276. [Google Scholar] [CrossRef]
- Zou, S. Understanding the Influence of Paint Baking on the HE Susceptibility of Some AHSS; The University of Queensland: Saint Lucia, Australia, 2018. [Google Scholar]
- Panossian, Z.; Mariaca, L.; Morcillo, M.; Flores, S.; Rocha, J.; Peña, J.; Herrera, F.; Corvo, F.; Sanchez, M.; Rincon, O. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere. Surf. Coat. Technol. 2005, 190, 244–248. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Cao, M.; Li, X. Performance Comparison of Zn-Based and Al–Si Based Coating on Boron Steel in Hot Stamping. Materials 2021, 14, 7043. [Google Scholar] [CrossRef]
- Ahner, C.; Maaß, P.; Peißker, P. Handbook of Hot-Dip Galvanization; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- da Costa Ximenes, D.A.; Moreira, L.P.; de Carvalho, J.E.R.; Leite, D.N.F.; Toledo, R.G.; da Silva Dias, F.M. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions. J. Mater. Res. Technol. 2020, 9, 629–635. [Google Scholar] [CrossRef]
- Ghanbari, Z.N.; Speer, J.G.; Findley, K.O. Coating Evolution and Mechanical Behavior of Zn-Coated Press-Hardening Sheet Steel. In Proceedings of the 5th International Conference on Hot Sheet Metal Forming of High-Performance Steel, Toronto, ON, Canada, 31 May–3 June 2015. [Google Scholar]
- Peng, H.; Peng, W.; Lu, R.; Wu, G.; Zhang, J. Diffusion and cracking behavior involved in hot press forming of Zn coated 22MnB5. J. Alloys Compd. 2019, 806, 195–205. [Google Scholar] [CrossRef]
- Fan, D.W.; De Cooman, B.C. State-of-the-knowledge on coating systems for hot stamped parts. Steel Res. Int. 2012, 83, 412–433. [Google Scholar] [CrossRef]
- Eleuterio, H.; Barbosa, A.; Buono, V. Optimization of Heat Treatment During Hot Stamping of PHS1500 Steel with Galvannealed Coating. In Proceedings of the International Symposium on New Developments in Advanced High-Strength Sheet Steels, Vail, CO, USA, 19–22 June 2023. [Google Scholar]
- Wienströer, S.; Fransen, M.; Mittelstädt, H.; Nazikkol, C.; Völker, M. Zinc/Iron phase transformation studies on galvannealed steel coatings by X-ray diffraction. ICDD 2003, 46, 291–296. [Google Scholar]
- Autengruber, R.; Luckeneder, G.; Kolnberger, S.; Faderl, J.; Hassel, A.W. Surface and coating analysis of press-hardened hot-dip galvanized steel sheet. Steel Res. Int. 2012, 83, 1005–1011. [Google Scholar] [CrossRef]
- Marder, A. The metallurgy of zinc-coated steel. Prog. Mater Sci. 2000, 45, 191–271. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Gao, X.-X.; Chen, H.-T.; Liu, X.-F.; Li, A.; Zhang, H.-J.; Wang, L.-N. Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement. Mater. Sci. Eng. C 2020, 116, 111197. [Google Scholar] [CrossRef]
- Xhoffer, C.; Dillen, H.; Cooman, B.D.; Hubin, A. Quantitative phase analysis of galvannealed coatings by coulometric stripping. J. Appl. Electrochem. 1999, 29, 209–219. [Google Scholar] [CrossRef]
- Jo, K.R.; Cho, L.; Sulistiyo, D.H.; Seo, E.J.; Kim, S.W.; De Cooman, B.C. Effects of Al-Si coating and Zn coating on the hydrogen uptake and embrittlement of ultra-high strength press-hardened steel. Surf. Coat. Technol. 2019, 374, 1108–1119. [Google Scholar] [CrossRef]
- Belin, C.H.; Belin, R.C. Synthesis and crystal structure determinations in the Γ and δ phase domains of the iron–zinc system: Electronic and bonding analysis of Fe13Zn39 and FeZn10, a subtle deviation from the Hume–Rothery standard? J. Solid State Chem. 2000, 151, 85–95. [Google Scholar] [CrossRef]
- Murugan, S.P.; Kim, J.; Kim, J.; Wan, Y.; Lee, C.; Jeon, J.B.; Park, Y.-D. Role of liquid Zn and α-Fe (Zn) on liquid metal embrittlement of medium Mn steel: An ex-situ microstructural analysis of galvannealed coating during high temperature tensile test. Surf. Coat. Technol. 2020, 398, 126069. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Zheng, X.; Shao, R.; Zhang, Y. Effect of Heat Treatment on the Formability of Zn-Coated Hot Stamping Steel. Steel Res. Int. 2022, 93, 2100725. [Google Scholar] [CrossRef]
- Lee, C.W.; Fan, D.W.; Sohn, I.R.; Lee, S.-J.; De Cooman, B.C. Liquid-metal-induced embrittlement of Zn-coated hot stamping steel. Metall. Mater. Trans. A 2012, 43, 5122–5127. [Google Scholar] [CrossRef]
- Lee, C.W.; Choi, W.S.; Cho, Y.R.; De Cooman, B.C. Surface oxide formation during rapid heating of Zn-coated press hardening steel. ISIJ Int. 2014, 54, 2364–2368. [Google Scholar] [CrossRef]
- Gaderbauer, W.; Arndt, M.; Truglas, T.; Steck, T.; Klingner, N.; Stifter, D.; Faderl, J.; Groiss, H. Effects of alloying elements on surface oxides of hot–dip galvanized press hardened steel. Surf. Coat. Technol. 2020, 404, 126466. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, B.; Wang, Z.; Liu, Y.; Wang, L.; Zhang, Y.; Li, S. Successive phase and morphology evolution of galvannealed coating in hot stamping and diffusion modeling of α-Fe (Zn)/steel system considering the effect of Zn concentration. Surf. Coat. Technol. 2019, 380, 125036. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Cho, L.; Marshall, D.; Walker, M.; Van Der Aa, E.; Pichler, A.; Ghassemi-Armaki, H.; Findley, K.; Speer, J. Liquid metal embrittlement susceptibility of two Zn-Coated advanced high strength steels of similar strengths. Mater. Sci. Eng. A 2021, 823, 141569. [Google Scholar] [CrossRef]
- Goodwin, F.; Silva, E. North American Zinc-based Sheet Steel Coatings Technology and Production: Status and Opportunities. In Proceedings of the 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Beijing, China, 1 September 2013. [Google Scholar]
- Drillet, P.; Grigorieva, R.; Leuillier, G.; Vietoris, T. Study of Cracks Propagation Inside the Steel on Press Hardened Steel Zinc Based Coatings. La Metallurgia Italiana. Available online: https://www.aimnet.it/allpdf/pdf_pubbli/gen12/DRILLET.pdf (accessed on 3 November 2024).
- Hayashida, T.M.S.; Takebayashi, H. Zinc-Oxide Formation on Zinc-Coated Steel Sheet During Hot Stamping. In Proceedings of the 13th International Conference on Zinc & Zinc Alloy Coated Steel Sheet (GALVATECH 2023), COEX, Seoul, Republic of Korea, 15–19 October 2023. [Google Scholar]
- Mason, B. Mineralogical aspects of the system FeO–Fc2O3–MnO–Mn2O3. GFF 1943, 65, 97–180. [Google Scholar] [CrossRef]
- Gerberich, W.; Stauffer, D.; Sofronis, P. A coexistent view of hydrogen effects on mechanical behavior of crystals: HELP and HEDE. In Proceedings of the 2008 International Hydrogen Conference—Effects of Hydrogen on Materials, Jackson, WY, USA, 7–10 September 2009; pp. 38–45. [Google Scholar]
- Li, X.; Ma, X.; Zhang, J.; Akiyama, E.; Wang, Y.; Song, X. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention. Acta Metall. Sin. 2020, 33, 759–773. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Q.; Cao, Z.; Chen, H.; Huang, M.; Wang, J. Review on hydrogen embrittlement of press-hardened steels for automotive applications. Acta Metall. Sin. 2023, 36, 1123–1143. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jung, H.-Y.; Jung, S.-P.; Son, J.-H.; Hyun, J.-S.; Kim, J.-S. Hydrogen Absorption and Desorption Behavior on Aluminum-Coated Hot-Stamped Boron Steel during Hot Press Forming and Automotive Manufacturing Processes. Materials 2021, 14, 6730. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, O.; Zinke, M.; Jüttner, S. Determination of hydrogen input in welded joints of press-hardened 22MnB5 steel. Weld. World 2014, 58, 339–346. [Google Scholar] [CrossRef]
- Aiello, F.; Beghini, M.; Belardini, C.M.; Bertini, L.; Macoretta, G.; Monelli, B.D.; Valentini, R. Proposal of a hydrogen embrittlement index for a martensitic advanced high-strength steel. Corros. Sci. 2023, 222, 111357. [Google Scholar] [CrossRef]
- Cho, L.; Sulistiyo, D.H.; Seo, E.J.; Jo, K.R.; Kim, S.W.; Oh, J.K.; Cho, Y.R.; De Cooman, B.C. Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel. Mater. Sci. Eng. A 2018, 734, 416–426. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, H.-K.; Lee, C.-W.; Yoo, B.-G.; Jung, H.-Y. Baking effect on desorption of diffusible hydrogen and hydrogen embrittlement on hot-stamped boron martensitic steel. Metals 2019, 9, 636. [Google Scholar] [CrossRef]
- Chida, T.; Hagihara, Y.; Akiyama, E.; Iwanaga, K.; Takagi, S.; Hayakawa, M.; Ohishi, H.; Hirakami, D.; Tarui, T. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. ISIJ Int. 2016, 56, 1268–1275. [Google Scholar] [CrossRef]
- Macháčková, N.; Rudomilova, D.; Prošek, T. Respirometry, a new approach for investigation of the relationship between corrosion-induced hydrogen evolution and its entry into metallic materials. Int. J. Hydrogen Energy 2024, 65, 817–828. [Google Scholar] [CrossRef]
- Perng, T.; Wu, J. A brief review note on mechanisms of hydrogen entry into metals. Mater. Lett. 2003, 57, 3437–3438. [Google Scholar] [CrossRef]
- Tsuru, T.; Huang, Y.; Ali, M.R.; Nishikata, A. Hydrogen entry into steel during atmospheric corrosion process. Corros. Sci. 2005, 47, 2431–2440. [Google Scholar] [CrossRef]
- Kushida, T. Hydrogen Entry into Steel by Atmospheric Corrosion. ISIJ Int. 2003, 43, 470–474. [Google Scholar] [CrossRef]
- Helbert, V.S.; Nazarov, A.; Taryba, M.; Vucko, F.; Montemor, F.; Thierry, D. Kinetics of corrosion reactions on press hardened steel in atmospheric conditions under thin electrolyte films. Electrochim. Acta 2023, 458, 142500. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H.; Kim, K.; Crockett, S. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corros. Sci. 1990, 30, 715–734. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique. Corros. Sci. 1990, 30, 681–696. [Google Scholar] [CrossRef]
- Hoar, T. The study of cathodic reactions in metallic corrosion. ECS Trans. 1939, 76, 157. [Google Scholar] [CrossRef]
- Haruna, T.; Shoji, Y.; Hirohata, Y. Hydrogen Absorption Rate into Fe with Rust Layer Containing NaCl during Atmospheric Corrosion in Humidity-controlled Air. ISIJ Int. 2021, 61, 1079–1084. [Google Scholar] [CrossRef]
- Akiyama, E.; Matsukado, K.; Wang, M.; Tsuzaki, K. Evaluation of hydrogen entry into high strength steel under atmospheric corrosion. Corros. Sci. 2010, 52, 2758–2765. [Google Scholar] [CrossRef]
- Akiyama, E.; Li, S.; Shinohara, T.; Zhang, Z.; Tsuzaki, K. Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion. Electrochim. Acta 2011, 56, 1799–1805. [Google Scholar] [CrossRef]
- Nazarov, A.; Vucko, F.; Thierry, D. Scanning Kelvin Probe for detection of the hydrogen induced by atmospheric corrosion of ultra-high strength steel. Electrochim. Acta 2016, 216, 130–139. [Google Scholar] [CrossRef]
- Ajito, S.; Tada, E.; Ooi, A.; Nishikata, A. Hydrogen absorption behavior of pre-rusted steels under an NaCl droplet. J. Electrochem. Soc. 2019, 166, C243. [Google Scholar] [CrossRef]
- Sørensen, J.; Thorling, L. Stimulation by lepidocrocite (7-FeOOH) of Fe (II)-dependent nitrite reduction. Geochim. Cosmochim. Acta 1991, 55, 1289–1294. [Google Scholar] [CrossRef]
- Schimo-Aichhorn, G.; Traxler, I.; Muhr, A.; Commenda, C.; Rudomilova, D.; Schneeweiss, O.; Luckeneder, G.; Duchaczek, H.; Stellnberger, K.-H.; Faderl, J. Hydrogen insertion into complex-phase high-strength steel during atmospheric corrosion at low relative humidity. Metals 2022, 12, 624. [Google Scholar] [CrossRef]
- Omura, T.; Nakamura, J.; Hirata, H.; Jotoku, K.; Ueyama, M.; Osuki, T.; Terunuma, M. Effect of surface hydrogen concentration on hydrogen embrittlement properties of stainless steels and Ni based alloys. ISIJ Int. 2016, 56, 405–412. [Google Scholar] [CrossRef]
- Ulmer, D.; Altstetter, C. Hydrogen concentration gradients in cathodically charged austenitic stainless steel. J. Mater. Res. 1987, 2, 305–312. [Google Scholar] [CrossRef]
- Alexander Stopher, M.; Rivera-Diaz-del-Castillo, P.E. Hydrogen embrittlement in bearing steels. Mater. Sci. Technol. 2016, 32, 1184–1193. [Google Scholar] [CrossRef]
- Kuhlmann, M.; Schwedler, O.; Holtschke, N.; Jüttner, S. Consideration of hydrogen transport in press-hardened 22MnB5. Mater. Test. 2015, 57, 977–984. [Google Scholar] [CrossRef]
- Kiuchi, K.; McLellan, R. The solubility and diffusivity of hydrogen in well-annealed and deformed iron. In Perspectives in Hydrogen in Metals; Elsevier: Amsterdam, The Netherlands, 1986; pp. 29–52. [Google Scholar]
- Cheng, X.Y.; Zhang, H.X. A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel. Corr. Sci. 2020, 174, 108800. [Google Scholar] [CrossRef]
- Dadfarnia, M.; Sofronis, P.; Neeraj, T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? Int. J. Hydrogen Energy 2011, 36, 10141–10148. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D.; Glam, B.; Eliezer, S.; Moreno, D. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel. J. Alloys Compd. 2015, 648, 601–608. [Google Scholar] [CrossRef]
- Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S.V.; Bashir, A.; Yedra, L.; Eswara, S.; Ponge, D.; Raabe, D. Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Mater. 2016, 109, 69–81. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Prevention of hydrogen embrittlement in steels. ISIJ Int. 2016, 56, 24–36. [Google Scholar] [CrossRef]
- Venezuela, J.; Liu, Q.; Zhang, M.; Zhou, Q.; Atrens, A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev. 2016, 34, 153–186. [Google Scholar] [CrossRef]
- Jo, K.-R.; Seo, E.-J.; Sulistiyo, D.H.; Kim, J.-K.; Kim, S.-W.; De Cooman, B.C. Data related to dislocation density-based constitutive modeling of the tensile behavior of lath martensitic press hardening steel. Data Brief 2017, 15, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Aucouturier, M. Grain boundary segregations and hydrogen embrittlement. J. Phys. Colloq. 1982, 43, C6-175–C6-185. [Google Scholar] [CrossRef]
- Cho, L.; Seo, E.J.; Sulistiyo, D.H.; Jo, K.R.; Kim, S.W.; Oh, J.K.; Cho, Y.R.; De Cooman, B.C. Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel. Mater. Sci. Eng. A 2018, 735, 448–455. [Google Scholar] [CrossRef]
- Li, H.; Lee, C.; Venezuela, J.; Kim, H.-J.; Atrens, A. Hydrogen diffusion and hydrogen embrittlement of a 1500 MPa hot-stamped steel 22MnB5 in different austenitizing conditions. Mater. Sci. Eng. A 2024, 897, 146349. [Google Scholar] [CrossRef]
- Latypova, R.; Nyo, T.T.; Seppälä, O.; Fangnon, E.; Yagodzinskyy, Y.; Mehtonen, S.; Hänninen, H.; Kömi, J.; Pallaspuro, S. Effect of prior austenite grain morphology on hydrogen embrittlement behaviour under plastic straining in as-quenched 500 HBW steels. Procedia Struct. Integr. 2022, 42, 871–878. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Sun, B.; Liao, Q.; Lu, H.; Jian, B.; Mohrbacher, H.; Zhang, W.; Guo, A.; Zhang, Y. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels. Mater. Sci. Eng. A 2015, 626, 136–143. [Google Scholar] [CrossRef]
- Hanninen, H.; Cullen, W.; Kemppainen, M. Effects of MnS inclusion dissolution on environmentally assisted cracking in low-alloy and carbon steels. Corrosion 1990, 46, 563–573. [Google Scholar] [CrossRef]
- Kuniya, J.; Anzai, H.; Masaoka, I. Effect of MnS inclusions on stress corrosion cracking in low-alloy steels. Corrosion 1992, 48, 419–425. [Google Scholar] [CrossRef]
- Kim, M.; Lyu, A.; Jeong, H.-B.; Lee, J.-Y.; Lee, Y.-K. Effect of inclusions on the hydrogen embrittlement of martensitic medium-Mn steel. J. Mater. Res. Technol. 2023, 26, 2724–2736. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Zhao, H.; Wang, L.; Jin, X. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel. Int. J. Hydrogen Energy 2014, 39, 13031–13040. [Google Scholar]
- Ding, W.; Yang, K.; Gong, Y.; Wang, L.; Hong, J.-y.; Li, W.; Jin, X.-j. Improving hydrogen embrittlement resistance of a modified press hardening steel by introducing retained austenite as hydrogen trap. J. Iron Steel Res. Int. 2022, 29, 1864–1872. [Google Scholar] [CrossRef]
- Malitckii, E.; Yagodzinskyy, Y.; Vilaça, P. Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high-strength steels. Mater. Sci. Eng. A 2019, 760, 68–75. [Google Scholar] [CrossRef]
- Chan, S.; Lee, H.; Yang, J. Effect of retained austenite on the hydrogen content and effective diffusivity of martensitic structure. Metall. Trans. A 1991, 22, 2579–2586. [Google Scholar] [CrossRef]
- Macháčková, N. Corrosion mechanism of press-hardened steel with zinc coating in controlled atmospheric conditions: A laboratory investigation. Corros. Sci. 2024, 240, 112477. [Google Scholar] [CrossRef]
- Hayashida, S.; Mitsunobu, T.; Takebayashi, H. Structure of Surface Oxide Formed on Zinc-Coated Steel Sheet During Hot Stamping. Corros. Sci. Technol. 2024, 23, 221–227. [Google Scholar]
- Volovitch, P.; Allely, C.; Ogle, K. Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel. Corros. Sci. 2009, 51, 1251–1262. [Google Scholar] [CrossRef]
- Prosek, T.; Thierry, D.; Taxén, C.; Maixner, J. Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions. Corros. Sci. 2007, 49, 2676–2693. [Google Scholar] [CrossRef]
- Talbot, D.E.; Talbot, J.D. Corrosion Science and Technology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rudomilova, D.; Prošek, T.; Traxler, I.; Faderl, J.; Luckeneder, G.; Schimo-Aichhorn, G.; Muhr, A. Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel. Metals 2020, 11, 44. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Yang, C.; Lian, J.; Feng, Y.; Han, X. The effect of charging conditions on hydrogen embrittlement behavior of ultra-high-strength steel 22MnB5. Mater. Charact. 2022, 194, 112377. [Google Scholar] [CrossRef]
- Chang, Z.; Ruan, X.; Chen, Z.; Zhang, Y.; Li, L.; Lan, L. Comparative evaluation on hydrogen damage behavior of two martensitic high strength press hardening steels. Int. J. Hydrogen Energy 2024, 61, 1060–1070. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, B.; Huang, M. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade. J. Mater. Sci. Technol. 2022, 124, 109–115. [Google Scholar] [CrossRef]
- Wang, M.; Akiyama, E.; Tsuzaki, K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros. Sci. 2007, 49, 4081–4097. [Google Scholar] [CrossRef]
- Zhang, Z.; Leng, W.; Shao, H.; Zhang, J.; Wang, J.; Cao, C. Study on the behavior of Zn–Fe alloy electroplating. J. Electroanal. Chem. 2001, 516, 127–130. [Google Scholar] [CrossRef]
- Huang, W.; Gu, H.; Liu, Q.; Si, T. Suppression of hydrogen-induced damage in 22MnB5 hot stamping steel by microalloying. Mater. Chem. Phys. 2020, 256, 123729. [Google Scholar] [CrossRef]
- Cho, L.; Kong, Y.; Speer, J.G.; Findley, K.O. Hydrogen embrittlement of medium Mn steels. Metals 2021, 11, 358. [Google Scholar] [CrossRef]
- Krid, M.; Mandy, M.; Sturel, T.; Grigorieva, R.; Drillet, P.; Jacques, P. A better understanding of hydrogen trapping and diffusion in aluminized press-hardenable steels. J. Mater. Res. Technol. 2024, 28, 1514–1522. [Google Scholar] [CrossRef]
- Ootsuka, S.; Tada, E.; Ooi, A.; Nishikata, A. Effect of environmental factors on hydrogen absorption into steel sheet under a wet-dry cyclic corrosion condition. ISIJ Int. 2021, 61, 1229–1235. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, J.Y. The effect of the interface character of TiC particles on hydrogen trapping in steel. Acta Metall. 1987, 35, 2695–2700. [Google Scholar] [CrossRef]
- Rudomilova, D.; Prošek, T.; Salvetr, P.; Knaislová, A.; Novák, P.; Kodým, R.; Schimo-Aichhorn, G.; Muhr, A.; Duchaczek, H.; Luckeneder, G. The effect of microstructure on hydrogen permeability of high strength steels. Mater. Corros. 2020, 71, 909–917. [Google Scholar] [CrossRef]
- Okayasu, M.; Fujiwara, T. Hydrogen embrittlement characteristics of hot-stamped 22MnB5 steel. Int. J. Hydrogen Energy 2021, 46, 19657–19669. [Google Scholar] [CrossRef]
- Ngiam, Y.; Cao, Z.; Huang, M. Understanding hydrogen embrittlement in press-hardened steel by coupling phase field and hydrogen diffusion modeling. Mater. Sci. Eng. A 2022, 834, 142523. [Google Scholar] [CrossRef]
- Wei, F.-G.; Hara, T.; Tsuzaki, K. Nano-Preciptates Design with Hydrogen Trapping Character in High Strength Steel. In Advanced Steels: The Recent Scenario in Steel Science and Technology—Proceedings of the International Conference on Advanced Steels (ICAS), Guilin, China, 9–11 November 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 87–92. [Google Scholar]
- Gui, L.; Zhao, Y.; Feng, Y.; Ma, M.; Lu, H.; Tan, K.; Chiu, P.-H.; Guo, A.; Bian, J.; Yang, J.-R. Study on the improving effect of Nb-V microalloying on the hydrogen induced delayed fracture property of 22MnB5 press hardened steel. Mater. Des. 2023, 227, 111763. [Google Scholar] [CrossRef]
- Okayasu, M.; Motojima, J. Microstructure-dependent hydrogen diffusion and trapping in high-tensile steel. Mater. Sci. Eng. A 2020, 790, 139418. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Hsu, T.; Zhou, S.; Wang, L.; Jin, X. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching–partitioning–tempering treatment. Scr. Mater. 2015, 97, 21–24. [Google Scholar] [CrossRef]
- Park, J.S.; Bang, H.R.; Jung, S.-P.; Kim, S.J. Effect of plastic strain on corrosion-induced hydrogen infusion and embrittlement behaviors of Zn-coated ultra-high strength steel sheet. Surf. Coat. Technol. 2024, 477, 130335. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhang, P.; Li, B.; Song, X.; Chen, J. Effect of pre-strain on hydrogen embrittlement of high strength steels. Mater. Sci. Eng. A 2014, 616, 116–122. [Google Scholar] [CrossRef]
- Nazarov, A.; Vucko, F.; Thierry, D. Scanning Kelvin probe Investigation of high-strength steel surface after impact of hydrogen and tensile strain. Corros. Mater. Degrad. 2020, 1, 187–197. [Google Scholar] [CrossRef]
- Ding, W.; Gong, Y.; Li, W.; Zhu, B.; Zhao, Y.; Jin, X.; Zhang, Y.; Ma, M. Investigation on Mechanical Properties and Hydrogen Behavior Distribution of Nb and V Bearing 22MnB5 B-pillar. In Advanced High Strength Steel and Press Hardening: Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018), Hefei, China, 20–22 August 2018; World Scientific: Singapore, 2019; pp. 568–578. [Google Scholar]
- Yoo, J.; Kim, S.; Jo, M.C.; Kim, S.; Oh, J.; Kim, S.-H.; Lee, S.; Sohn, S.S. Effects of Al-Si coating structures on bendability and resistance to hydrogen embrittlement in 1.5-GPa-grade hot-press-forming steel. Acta Mater. 2022, 225, 117561. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.S.; Jung, S.-P. Corrosion-induced hydrogen evolution, absorption, and cracking behaviors of ultra-high-strength galvanized and galvannealed steel sheets. Mater. Degrad. 2022, 6, 31. [Google Scholar] [CrossRef]
- Tada, E.; Miura, Y. Hydrogen Absorption Behavior into Zn and Zn–Al Coated Steels during Corrosion in Aqueous Solutions. ISIJ Int. 2016, 56, 444–451. [Google Scholar] [CrossRef]
- Ma, W.; Li, X.; Zheng, X.; Xu, D.; Zhang, Y.; Yao, Y. Experimental Investigation of Hot Forming of Zn-Coated Hot-Stamping Steel. Steel Res. Int. 2004, 95, 2400168. [Google Scholar] [CrossRef]
- Panagopoulos, C.; Georgiou, E.; Chaliampalias, D. Cathodic hydrogen charging of zinc. Corros. Sci. 2014, 79, 16–20. [Google Scholar] [CrossRef]
- Okayasu, M.; Yang, L. Influence of microstructure on the mechanical properties and hydrogen embrittlement characteristics of 1800 MPa grade hot-stamped 22MnB5 steel. J. Mater. Sci. 2019, 54, 5061–5073. [Google Scholar] [CrossRef]
- Du, Y.; Gao, X.; Lan, L.; Qi, X.; Wu, H.; Du, L.; Misra, R. Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments. Int. J. Hydrogen Energy 2019, 44, 32292–32306. [Google Scholar] [CrossRef]
- Pallaspuro, S.; Fangnon, E.; Aravindh, S.A.; Claeys, L.; Latypova, R.; Yagodzinsky, Y.; Aho, N.; Kantanen, P.; Uusikallio, S.; Depover, T. Mitigating hydrogen embrittlement via film-like retained austenite in 2 GPa direct-quenched and partitioned martensitic steels. Mater. Sci. Eng. A 2024, 908, 146872. [Google Scholar] [CrossRef]
- Persson, D.; Thierry, D.; Karlsson, O. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide. Corros. Sci. 2017, 126, 152–165. [Google Scholar] [CrossRef]
- Azevedo, M.S.; Allély, C.; Ogle, K.; Volovitch, P. Corrosion mechanisms of Zn (Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corros. Sci. 2015, 90, 472–481. [Google Scholar] [CrossRef]
- Azevedo, M.S.; Allély, C.; Ogle, K.; Volovitch, P. Corrosion mechanisms of Zn (Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corros. Sci. 2015, 90, 482–490. [Google Scholar] [CrossRef]
Grade | C | Si Max. | Mn Max. | P Max. | S Max. | Al | Cr Max. | Ti + Nb Max. | B |
---|---|---|---|---|---|---|---|---|---|
PHS 1500 (22MnB5) | 0.20–0.25 | 0.5 | 2.0 | 0.02 | 0.005 | 0.02–0.10 | 0.5 | 0.05 | 0.002–0.005 |
PHS 2000 (32MnB5) | 0.30–0.38 | 0.5 | 2.0 | 0.02 | 0.005 | 0.02–0.10 | 0.5 | 0.10 | 0.002–0.005 |
Grade | Before Hot Stamping | After Hot Stamping | ||||
---|---|---|---|---|---|---|
YS [MPa] | UTS [MPa] | Ԑ [%] | YS [MPa] | UTS [MPa] | Ԑ [%] | |
PHS 1500 | 320–480 | 480–600 | ≥18 | 950–1250 | 1350–1600 | ≥5 |
PHS 2000 | 320–500 | 500–650 | ≥17 | ≥1100 | ≥1800 | ≥5 |
Phase | Chemical Formula | Fe Content [wt.%] |
---|---|---|
α-Fe(Zn) | Fe(Zn) | 60–80 [70,77] |
Γ-ZnFe | Fe3Zn10 | 11–24 [69] |
δ-ZnFe | FeZn10 | 7–14 [45,78] |
Effect on PHS Behavior | References | |
---|---|---|
UTS | Stronger is more susceptible to HE | [17,147] |
Hydrogen concentration | Depends on the steel (for 1800 MPa steel) Limit diffusible hydrogen to 1.7 ppm Limit total hydrogen to 4 ppm Strength decreases up to 75% of the UTS at 8.5 ppm of total hydrogen | [29] [30] |
Austenitization | 900 °C for 3–10 min to obtain the best HE resistance in fully martensitic structure results | [80,129,147,157] |
Paint baking | 180 °C for 10–30 min to remove diffusible hydrogen without decreasing the UTS | [29,62,156] |
Prior austenitic grain size | Under 10 µm for the best mechanical properties; smaller PAGs are more prone to loss in ductility | [21,51,130] |
Strain | Minimal influence at 1–3%; after charging, it may decrease corrosion resistance by influencing the OCP (less stable passive layer) | [163,164] |
Precipitates | Nb precipitates increase HE resistance by lowering the diffusion coefficient and acting as irreversible traps ԑ-carbides (SiMn and Ti-based) form during paint baking and increase the HE resistance | [10,131,150,159,165] |
Extreme charging conditions | More ductile PHS—cracks and blisters Less ductile PHS—microcracks forming large cracks | [146] |
Fracture mechanism | Low H—ductile fracture with small dimples, necking Medium H—quasi-cleavage fractures along the (011) plane of martensitic laths High H—fracture initiated on the surface progressing with an intergranular facet mechanism, no necking | [20,147,159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kročil, T.; Macháčková, N.; Prošek, T.; Steck, T.; Sharif, R. Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review. Metals 2024, 14, 1285. https://doi.org/10.3390/met14111285
Kročil T, Macháčková N, Prošek T, Steck T, Sharif R. Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review. Metals. 2024; 14(11):1285. https://doi.org/10.3390/met14111285
Chicago/Turabian StyleKročil, Tomáš, Nikola Macháčková, Tomáš Prošek, Thomas Steck, and Reza Sharif. 2024. "Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review" Metals 14, no. 11: 1285. https://doi.org/10.3390/met14111285
APA StyleKročil, T., Macháčková, N., Prošek, T., Steck, T., & Sharif, R. (2024). Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review. Metals, 14(11), 1285. https://doi.org/10.3390/met14111285