Enhancement of the Electrical Conductivity and Mechanical Properties of Al-Mg-Si and Al-Mg-Zn Ternary Systems After a T8 Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Analysis
3.2. Microstructural and Elemental Analysis
3.3. Mechanical Response and Electrical Properties
3.3.1. Tensile Testing
3.3.2. Electrical Conductivity and Mechanical Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gandara, M.J.F. Aluminium: The metal of choice. Mater. Technol. 2013, 47, 261–265. [Google Scholar]
- Dokšanović, T.; Džeba, I.; Markulak, D. Variability of structural aluminium alloys mechanical properties. Struct. Saf. 2017, 67, 11–26. [Google Scholar] [CrossRef]
- Varshney, D.; Kumar, K. Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization. Ain Shams Eng. J. 2021, 12, 1143–1152. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, J.-T.; Zhang, B.; Shao, W.-Z.; Zhen, L. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing. J. Mater. Sci. Technol. 2019, 35, 962–971. [Google Scholar] [CrossRef]
- Kaufman, J.G. Properties of Pure Aluminum. In Aluminum Science and Technology; Anderson, K., Weritz, J., Kaufman, J.G., Eds.; ASM International: Almere, The Netherlands, 2018. [Google Scholar]
- European Standard EN 50183; Conductors of Aluminium Alloy with Magnesium and Silicon Content. European Committee for Standardization: Brussels, Belgium, 2002.
- Rocha, P.; Langlois, S.; Lalonde, S.; Araújo, J.; Castro, F. Influence of 1350 and 6201 aluminum alloys on the fatigue life of overhead conductors—A finite element analysis. Tribol. Int. 2023, 186, 108661. [Google Scholar] [CrossRef]
- Cui, X.; Wu, Y.; Liu, X.; Zhao, Q.; Zhang, G. Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum. Mater. Des. 2015, 86, 397–403. [Google Scholar] [CrossRef]
- Abdo, H.S.; Seikh, A.H.; Mohammed, J.A.; Soliman, M.S. Alloying Elements Effects on Electrical Conductivity and Mechanical Properties of Newly Fabricated Al Based Alloys Produced by Conventional Casting Process. Materials 2021, 14, 3971. [Google Scholar] [CrossRef]
- Rossiter, P.L. The Electrical Resistivity of Metals and Alloys; Cambridge University Press: Cambridge, UK, 1991; Volume 6. [Google Scholar]
- Guan, R.; Shen, Y.; Zhao, Z.; Wang, X. A high-strength, ductile Al-0.35 Sc-0.2 Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J. Mater. Sci. Technol. 2017, 33, 215–223. [Google Scholar] [CrossRef]
- Aluminum 1350-H16; Aluminum Standards and Data 2000. Matweb: Blacksburg, VA, USA, 2024.
- Aluminum 6201-T6; Aluminum Standards and Data 2000. Matweb: Blacksburg, VA, USA, 2024.
- Harada, Y.; Dunand, D. Microstructure of Al3Sc with ternary transition-metal additions. Mater. Sci. Eng. A 2002, 329, 686–695. [Google Scholar] [CrossRef]
- Gorlov, L.; Loginova, I.; Glavatskikh, M.; Barkov, R.; Pozdniakov, A. Novel precipitation strengthened Al-Y-Sc-Er alloy with high mechanical properties, ductility and electrical conductivity produced by different thermomechanical treatments. J. Alloys Compd. 2022, 918, 165748. [Google Scholar] [CrossRef]
- Karabay, S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting. Mater. Des. 2008, 29, 1364–1375. [Google Scholar] [CrossRef]
- Lim, S.J.; Choi, H.J.; Na, K.H.; Lee, C.H. Dimensional characteristics of products using rotary swaging machine with four-dies. Solid State Phenom. 2007, 124, 1645–1648. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Murashkin, M.Y.; Sabirov, I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr. Mater. 2014, 76, 13–16. [Google Scholar] [CrossRef]
- Mao, Q.; Wang, L.; Nie, J.; Zhao, Y. Optimizing strength and electrical conductivity of 6201 aluminum alloy wire through rotary swaging and aging processes. J. Mater. Process. Technol. 2024, 331, 118497. [Google Scholar] [CrossRef]
- Fadayomi, O.; Clark, R.; Thole, V.; Sanders, P.G.; Odegard, G.M. Investigation of Al-Zn-Zr and Al-Zn-Ni alloys for high electrical conductivity and strength application. Mater. Sci. Eng. A 2019, 743, 785–797. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Totten, G.E.; Bamberger, M. The importance of magnesium and its alloys in modern technology and methods of shaping their structure and properties. In Magnesium and Its Alloys; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–28. [Google Scholar]
- Prasad, S.V.S.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research-A review. J. Magnes. Alloys 2022, 10, 1–61. [Google Scholar] [CrossRef]
- Okamoto, H.; Villars, P. (Eds.) Al-Mg-Zn Vertical Section of Ternary Phase; Material Phases Data System (MPDS); Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Hari Kumar, K.C.; Chakraborti, N.; Lukas, H.L.; Bodak, O.; Rokhlin, L.; Materials Science International Team MSIT®. Section from Al to Mg2Si: Datasheet from MSI Eureka in Springer Materials; Effenberg, G., Ed.; MSI, Materials Science International Services GmbH: Stuttgart, Germany, 2004; Available online: https://materials.springer.com/msi/phase-diagram/docs/sm_msi_r_10_014594_03_full_LnkDia0 (accessed on 15 October 2023).
- Allamki, A.; Al-Maharbi, M.; Arunachalam, R.; Qamar, S.Z. Improved tensile strength and electrical conductivity of the electrical conductor aluminum alloy 6201. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2021. [Google Scholar]
- Kim, Y.-W.; Jo, Y.-H.; Lee, Y.-S.; Kim, H.-W.; Lee, J.-I. Effect of Dissolution of η′ Precipitates on Mechanical Properties of A7075-T6 Alloy. Korean J. Met. Mater. 2022, 60, 83–93. [Google Scholar] [CrossRef]
- ASTM E92-23; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM B193-20; Standard Test Method for Resistivity of Electrical Conductor Materials. ASTM: West Conshohocken, PA, USA, 2023.
- Yang, B.; Gao, M.; Wang, Y.; Guan, R. Dynamic recrystallization behavior and mechanical properties response of rheo-extruded Al–Mg alloys with various Mg contents. Mater. Sci. Eng. A 2022, 849, 143450. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Frodal, B.H.; Thomesen, S.; Børvik, T.; Hopperstad, O.S. On fracture anisotropy in textured aluminium alloys. Int. J. Solids Struct. 2022, 244, 111563. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gottingen 1918, 2, 8–100. [Google Scholar]
- Ahlawat, A.; Sathe, V.; Reddy, V.; Gupta, A. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 2011, 323, 2049–2054. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, X.; Liu, H.; Wang, Y. Effect of annealing treatment on the microstructure and mechanical properties of ultrafine-grained aluminum. Mater. Des. 2014, 53, 262–268. [Google Scholar] [CrossRef]
- ASTM B398/B398M-22; Standard Specification for Aluminum-Alloy 6201-T81 and 6201-T83 Wire for Electrical Purposes. ASTM: West Conshohocken, PA, USA, 2023.
- Dong, Q.; Zhang, Y.; Wang, J.; Huang, L.; Nagaumi, H. Enhanced strength-conductivity trade-off in Al-Mg-Si alloys with optimized Mg/Si ratio. J. Alloys Compd. 2024, 970, 172682. [Google Scholar] [CrossRef]
- Stiller, K.; Warren, P.J.; Hansen, V.; Angenete, J.; Gjønnes, J. Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 and 150 C. Mater. Sci. Eng. A 1999, 270, 55–63. [Google Scholar] [CrossRef]
- Kumar, K.A.; Pillai UT, S.; Pai, B.C.; Chakraborty, M. Dry sliding wear behaviour of Mg–Si alloys. Wear 2013, 303, 56–64. [Google Scholar] [CrossRef]
- Reif, W.; Dutkiewicz, J.; Ciach, R.; Yu, S.; Król, J. Effect of ageing on the evolution of precipitates in AlSiCuMg alloys. Mater. Sci. Eng. A 1997, 234, 165–168. [Google Scholar] [CrossRef]
- Zeren, M. Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys. J. Mater. Process. Technol. 2005, 169, 292–298. [Google Scholar] [CrossRef]
- Otani, Y.; Sasaki, S. Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability. Mater. Sci. Eng. A 2020, 777, 139079. [Google Scholar] [CrossRef]
- Qi, T.; Zhu, H.; Zhang, H.; Yin, J.; Ke, L.; Zeng, X. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater. Des. 2017, 135, 257–266. [Google Scholar] [CrossRef]
- Shin, S.-S.; Won, S.-J.; So, H.; Lee, S.-K.; Kim, K.-H. High-strength Al-Zn-Cu-based alloy synthesized by high-pressure die-casting method. Metall. Mater. Trans. A 2020, 51, 6630–6639. [Google Scholar] [CrossRef]
- Oñoro, J. The stress corrosion cracking behaviour of heat-treated Al–Zn–Mg–Cu alloy in modified salt spray fog testing. Mater. Corros. 2010, 61, 125–129. [Google Scholar] [CrossRef]
- Jiang, H.; Xing, H.; Xu, Z.; Yang, B.; Liang, E.; Zhang, J.; Sun, B. Effect of Zn content and Sc, Zr addition on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys. J. Alloys Compd. 2023, 947, 169246. [Google Scholar] [CrossRef]
- Heywang, W.; Zaininger, K. Silicon: The semiconductor material. In Silicon: Evolution and Future of a Technology; Springer: Berlin/Heidelberg, Germany, 2004; pp. 25–42. [Google Scholar]
- Abbas, S.F.; Kim, T.-S. Effect of lattice strain on the electrical conductivity of rapidly solidified copper-iron metastable alloys. J. Alloys Compd. 2018, 732, 129–135. [Google Scholar] [CrossRef]
- Raja, G.; Nallathambi, A.; Prakasam, A.; Gopinath, S.; Ragupathi, C.; Narayanan, S.; Tamizhdurai, P.; Kumaran, R.; Alsaiari, N.S.; Abualnaja, K.M.; et al. Effect of lattice strain on structure, morphology, electrical conductivity and magneto-optical and catalytic properties of Ni-doped Mn3O4 nano-crystallites synthesized by microwave route. J. Saudi Chem. Soc. 2022, 26, 101440. [Google Scholar] [CrossRef]
- Cao, F.; Qin, Z. Effect of two-stage aging on hardness and electrical conductivity of as-extruded 7075 aAluminum Alloy. J. Phys. Conf. Ser. 2021, 1885, 042035. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Dean, W.A. Properties and Physical Metallurgy; ASM International: Materials Park, OH, USA, 1984; Chapter 6; pp. 200–241. [Google Scholar]
Alloys/Elements | Nominal at. % | Experimental ICP at. % | Experimental ICP wt. % | Atomic Ratio | Ref. |
---|---|---|---|---|---|
Al-Mg-Zn–(A) | Zn:Mg | This work | |||
Al | 97.30 | 97.29 | 94.37 | ||
Mg | 0.90 | 0.82 | 0.71 | 2.30 | |
Zn | 1.80 | 1.89 | 4.46 | ||
Al-Mg-Zn–(B) | Zn:Mg | This work | |||
Al | 98.21 | 98.17 | 96.49 | ||
Mg | 0.60 | 0.57 | 0.50 | 2.21 | |
Zn | 1.20 | 1.26 | 3.00 | ||
Al-Mg-Si | Mg:Si | This work | |||
Al | 98.35 | 98.47 | 98.55 | ||
Mg | 1.10 | 1.05 | 0.95 | 2.19 | |
Si | 0.55 | 0.48 | 0.50 | ||
6201 | Mg:Si | [13] | |||
Al | 97.3–98.9 | ||||
Mg | 0.60–0.90 | 0.85–1.8 | |||
Si | 0.50–0.90 | ||||
1350 | Mg:Si | [12] | |||
Al | 99.50 | 0.2 | |||
Mg | ≤0.05 | Zn:Mg | |||
Si | ≤0.25 | 1 | |||
Zn | ≤0.05 |
Sample | Lattice Parameter (Å) | Crystallite Size (nm) | Strain (ε) |
---|---|---|---|
Cast | |||
Al-Mg-Si | 4.058 ± 0.002 | 35.88 | 0.00183 |
Al-Mg-Zn-(A) | 4.056 ± 0.002 | 45.61 | 0.00167 |
Al-Mg-Zn-(B) | 4.058 ± 0.003 | 51.48 | 0.00203 |
Extruded | |||
Al-Mg-Si | 4.056 ± 0.001 | 64.24 | 0.00129 |
Al-Mg-Zn-(A) | 4.057 ± 0.002 | 76.72 | 0.00151 |
Al-Mg-Zn-(B) | 4.050 ± 0.001 | 58.46 | 0.00207 |
Wire drawn | |||
Al-Mg-Si | 4.044 ± 0.003 | 22.83 | 0.00350 |
Al-Mg-Zn-(A) | 4.046 ± 0.002 | 20.65 | 0.00291 |
Al-Mg-Zn-(B) | 4.044 ± 0.002 | 27.09 | 0.00316 |
Wire aging 3000 min | |||
Al-Mg-Si | 4.049 ± 0.001 | 29.38 | 0.00154 |
Al-Mg-Zn-(A) | 4.050 ± 0.002 | 55.44 | 0.00127 |
Al-Mg-Zn-(B) | 4.051 ± 0.002 | 74.47 | 0.00270 |
Element | Maximum Solubility in Aluminum % | Average Increase in Resistivity per wt. % μΩ·cm | |
---|---|---|---|
In Solution | Out Solution | ||
Chrome | 0.77 | 4.00 | 0.180 |
Copper | 5.65 | 0.34 | 0.30 |
Iron | 0.05 | 2.56 | 0.058 |
Lithium | 4.00 | 3.31 | 0.680 |
Magnesium | 14.90 | 0.54 | 0.220 |
Manganese | 1.82 | 2.94 | 0.349 |
Nickel | 0.05 | 0.81 | 0.061 |
Silicon | 1.65 | 1.02 | 0.088 |
Titanium | 1.00 | 2.88 | 0.120 |
Vanadium | 0.50 | 3.58 | 0.280 |
Zinc | 82.8 | 0.09 | 0.023 |
Zirconium | 0.28 | 1.74 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanacio-Sánchez, X.; Garay-Reyes, C.G.; Martínez-García, A.; Estrada-Guel, I.; Mendoza-Duarte, J.M.; Guerrero-Seañez, P.; González-Sánchez, S.; Rocha-Rangel, E.; de Jesús Cruz-Rivera, J.; Gutiérrez-Castañeda, E.J.; et al. Enhancement of the Electrical Conductivity and Mechanical Properties of Al-Mg-Si and Al-Mg-Zn Ternary Systems After a T8 Heat Treatment. Metals 2024, 14, 1286. https://doi.org/10.3390/met14111286
Atanacio-Sánchez X, Garay-Reyes CG, Martínez-García A, Estrada-Guel I, Mendoza-Duarte JM, Guerrero-Seañez P, González-Sánchez S, Rocha-Rangel E, de Jesús Cruz-Rivera J, Gutiérrez-Castañeda EJ, et al. Enhancement of the Electrical Conductivity and Mechanical Properties of Al-Mg-Si and Al-Mg-Zn Ternary Systems After a T8 Heat Treatment. Metals. 2024; 14(11):1286. https://doi.org/10.3390/met14111286
Chicago/Turabian StyleAtanacio-Sánchez, Xóchitl, Carlos Gamaliel Garay-Reyes, Alfredo Martínez-García, Ivanovich Estrada-Guel, José Manuel Mendoza-Duarte, Pedro Guerrero-Seañez, Sergio González-Sánchez, Enrique Rocha-Rangel, José de Jesús Cruz-Rivera, Emmanuel José Gutiérrez-Castañeda, and et al. 2024. "Enhancement of the Electrical Conductivity and Mechanical Properties of Al-Mg-Si and Al-Mg-Zn Ternary Systems After a T8 Heat Treatment" Metals 14, no. 11: 1286. https://doi.org/10.3390/met14111286
APA StyleAtanacio-Sánchez, X., Garay-Reyes, C. G., Martínez-García, A., Estrada-Guel, I., Mendoza-Duarte, J. M., Guerrero-Seañez, P., González-Sánchez, S., Rocha-Rangel, E., de Jesús Cruz-Rivera, J., Gutiérrez-Castañeda, E. J., & Martínez-Sánchez, R. (2024). Enhancement of the Electrical Conductivity and Mechanical Properties of Al-Mg-Si and Al-Mg-Zn Ternary Systems After a T8 Heat Treatment. Metals, 14(11), 1286. https://doi.org/10.3390/met14111286