Preparation of Titanium Metal by Deoxygenation Under KCl-NaCl-YCl3 System Using Soluble Anode
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Materials
2.2. Experimental Procedure
2.2.1. Preparation of Titanium Oxy Carbonitride
2.2.2. Titanium Metal Preparation
3. Results and Discussion
3.1. Characterization of TiCxOy
3.2. Electrolyte Product Analysis
3.2.1. Phase Analysis
3.2.2. Microscopic Topography Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiao, H.; Jiao, S.; Song, W.-L.; Chen, H.; Wang, M.; Tu, J.; Fang, D. Depolarization behavior of Ti deposition at liquid metal cathodes in a NaCl-KCl-KF melt. J. Electrochem. Soc. 2019, 166, E401. [Google Scholar] [CrossRef]
- Tian, D.; Wang, M.; Jiao, H.; Jiao, S. Improved USTB titanium production with a Ti2CO anode formed by casting. J. Electrochem. Soc. 2019, 166, E226. [Google Scholar] [CrossRef]
- Reddy, R.G.; Shinde, P.S.; Liu, A. The emerging technologies for producing low-cost titanium. J. Electrochem. Soc. 2021, 168, 042502. [Google Scholar] [CrossRef]
- Kroll, W. The production of ductile titanium. Trans. Electrochem. Soc. 1940, 78, 35. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Froes, F.; Zhang, Y. Extractive Metallurgy of Titanium: Conventional and Recent Advances in Extraction and Production of Titanium Metal; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Xi, X.-L.; Feng, M.; Zhang, L.-W.; Nie, Z.-R. Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery. Int. J. Miner. Metall. Mater. 2020, 27, 1599–1617. [Google Scholar] [CrossRef]
- Chen, G.Z.; Fray, D.J.; Farthing, T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 2000, 407, 361–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Z.Z.; Sun, P.; Zheng, S.; Xia, Y.; Free, M. A perspective on thermochemical and electrochemical processes for titanium metal production. Jom 2017, 69, 1861–1868. [Google Scholar] [CrossRef]
- Ma, M.; Wang, D.; Wang, W.; Hu, X.; Jin, X.; Chen, G.Z. Extraction of titanium from different titania precursors by the FFC Cambridge process. J. Alloys Compd. 2006, 420, 37–45. [Google Scholar] [CrossRef]
- Heck, S.C.; de Oliveira, M.F.; Radovanovic, E. Ti production from natural rutile sand by the FFC process: Experimental and mathematical modelling study. J. Electroanal. Chem. 2022, 905, 115996. [Google Scholar] [CrossRef]
- Benson, L.; Mellor, I.; Jackson, M. Direct reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloys. J. Mater. Sci. 2016, 51, 4250–4261. [Google Scholar] [CrossRef]
- Ono, K.; Suzuki, R.O. A new concept for producing Ti sponge: Calciothermic reduction. Jom 2002, 54, 59–61. [Google Scholar] [CrossRef]
- Suzuki, R.O.; Ono, K.; Teranuma, K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall. Mater. Trans. B 2003, 34, 287–295. [Google Scholar] [CrossRef]
- Suzuki, R.O.; Fukui, S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Mater. Trans. 2004, 45, 1665–1671. [Google Scholar] [CrossRef]
- Park, I.; Abiko, T.; Okabe, T.H. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR). J. Phys. Chem. Solids 2005, 66, 410–413. [Google Scholar] [CrossRef]
- Jiao, S.; Zhu, H. Novel metallurgical process for titanium production. J. Mater. Res. 2006, 21, 2172–2175. [Google Scholar] [CrossRef]
- Jiao, S.; Zhu, H. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J. Alloys Compd. 2007, 438, 243–246. [Google Scholar] [CrossRef]
- Wang, Q.; Song, J.; Wu, J.; Jiao, S.; Hou, J.; Zhu, H. A new consumable anode material of titanium oxycarbonitride for the USTB titanium process. Phys. Chem. Chem. Phys. 2014, 16, 8086–8091. [Google Scholar] [CrossRef]
- Tian, D.; Tu, J.; Wang, M.; Luo, Y.; Jiao, S. Rapid electrodeposition of Ti on a liquid Zn cathode from a consumable casting TiC0. 5O0. 5 anode. J. Electrochem. Soc. 2020, 167, 123502. [Google Scholar] [CrossRef]
- Jiao, H.; Song, W.-L.; Chen, H.; Wang, M.; Jiao, S.; Fang, D. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis. J. Clean. Prod. 2020, 261, 121314. [Google Scholar] [CrossRef]
- Kong, L.; Ouchi, T.; Okabe, T.H. Deoxidation of Ti using Ho in HoCl3 flux and determination of thermodynamic data of HoOCl. J. Alloys Compd. 2021, 863, 156047. [Google Scholar] [CrossRef]
- Chen, G.Z.; Fray, D.J.; Farthing, T.W. Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall. Mater. Trans. B 2001, 32, 1041–1052. [Google Scholar] [CrossRef]
- Zheng, C.; Ouchi, T.; Iizuka, A.; Taninouchi, Y.-K.; Okabe, T.H. Deoxidation of titanium using Mg as deoxidant in MgCl2-YCl3 flux. Metall. Mater. Trans. B 2019, 50, 622–631. [Google Scholar] [CrossRef]
- Okabe, T.H.; Zheng, C.; Taninouchi, Y.-K. Thermodynamic considerations of direct oxygen removal from titanium by utilizing the deoxidation capability of rare earth metals. Metall. Mater. Trans. B 2018, 49, 1056–1066. [Google Scholar] [CrossRef]
- Iizuka, A.; Ouchi, T.; Okabe, T.H. Development of a new titanium powder sintering process with deoxidation reaction using yttrium metal. Mater. Trans. 2020, 61, 758–765. [Google Scholar] [CrossRef]
- Zheng, C.; Ouchi, T.; Kong, L.; Taninouchi, Y.-K.; Okabe, T.H. Electrochemical deoxidation of titanium in molten MgCl2–YCl3. Metall. Mater. Trans. B 2019, 50, 1652–1661. [Google Scholar] [CrossRef]
- Kamimura, G.; Ouchi, T.; Okabe, T.H. Deoxidation of titanium using cerium–chloride flux for upgrade recycling of titanium scraps. Mater. Trans. 2022, 63, 893–902. [Google Scholar] [CrossRef]
- Okabe, T.H.; Kong, L.; Ouchi, T. Thermodynamic consideration of direct oxygen removal from titanium by utilizing vapor of rare earth metals. Metall. Mater. Trans. B 2022, 53, 1269–1282. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, Y.; Kong, L.; Gao, L.; Xu, B.; Yang, B. Study on the deep deoxidation mechanism of titanium powder using Y/YOCl/YCl3 and Y/Y2O3 systems. J. Alloys Compd. 2024, 1010, 177132. [Google Scholar] [CrossRef]
- Jiao, S.; Ning, X.; Huang, K.; Zhu, H. Electrochemical dissolution behavior of conductive TiCxO1–x solid solutions. Pure Appl. Chem. 2010, 82, 1691–1699. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, D.; Fan, G.; Sun, H.; Dang, J. Thermodynamic and experimental study on the reduction and carbonization of TiO2 through gas-solid reaction. Int. J. Energy Res. 2019, 43, 4253–4263. [Google Scholar] [CrossRef]
Year | Author | Experimental Program | Ref. |
---|---|---|---|
2000 | Chen et al. | Electrochemical experiments using TiO2 as raw material and CaCl2 as electrolyte. | [7] |
2002 | Ono and Suzuki et al. | Electrochemical experiments using TiO2 as raw material and Ca as electrolyte. | [12] |
2005 | Okabe and Park et al. | Calcium as electrolyte for direct preparation of titanium powder from TiO2 via electron-mediated reactions. | [15] |
2006 | Hongmin Zhu et al. | Titanium metal obtained electrochemically by using TiCxOy as raw material and NaCl-KCl as electrolyte. | [16] |
2014 | Wang et al. | Electrochemistry using TiC0.25O0.25N0.5 as raw material in NaCl-KCl. | [18] |
2020 | Tian et al. | Electrochemical experiments using TiC0.5O0.5 as raw material in NaCl-KCl. | [19] |
2019 | Zheng et al. | Electrochemical deoxygenation using YCl3 as deoxidizer. | [26] |
2020 | Iizuka et al. | Thermochemical deoxidation with Y as deoxidizer. | [25] |
2022 | Kamimura et al. | Thermochemical deoxygenation using Ce as deoxidizer. | [27] |
Materials/Chemicals | Morphological | Purity/Model | Supplier |
---|---|---|---|
TiO2 | White powder | ≥99.00% | Shanghai Aladdin Biochemical Technology Co., Shanghai, China |
C | Black powder | ≥99.99% | Ivana Tianwang Graphite Products Co., Dongguan, China |
NaCl | white granule | ≥99.5% | Tianjin Zhonglian Chemical Reagent Co., Tianjin, China |
KCl | white granule | ≥99.5% | Sichuan Longxi Science Co., Chengdu, China |
YCl3 | White powder | ≥99.9% | High Pure Chemical Co. Suzhou Compon Chemical Co., Suzhou, China |
Graphite Crucible | Henan Xinwang Special Graphite Products Co., Zhengzhou, China | ||
High purity Ar | ≥99.999 vol% | Kunming Pengyida Gas Products Co., Kunming, China |
TiO2:C (Molar Ratio) | Ti (wt.%) | O (wt.%) | Cl (wt.%) | Y (wt.%) |
---|---|---|---|---|
1:1.9 | 99.36 | 0.64 | 0.01 | 0.00 |
1:2.0 | 99.42 | 0.57 | 0.01 | 0.00 |
1:2.1 | 99.38 | 0.61 | 0.01 | 0.00 |
1:2.2 | 99.35 | 0.65 | 0.00 | 0.00 |
1:2.3 | 99.39 | 0.49 | 0.12 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, T.; Zhu, F.; Zhao, Y.; Fang, H.; Ji, H.; Gao, L. Preparation of Titanium Metal by Deoxygenation Under KCl-NaCl-YCl3 System Using Soluble Anode. Metals 2024, 14, 1288. https://doi.org/10.3390/met14111288
Mu T, Zhu F, Zhao Y, Fang H, Ji H, Gao L. Preparation of Titanium Metal by Deoxygenation Under KCl-NaCl-YCl3 System Using Soluble Anode. Metals. 2024; 14(11):1288. https://doi.org/10.3390/met14111288
Chicago/Turabian StyleMu, Tianzhu, Fuxing Zhu, Yan Zhao, Haoyu Fang, Haohang Ji, and Lei Gao. 2024. "Preparation of Titanium Metal by Deoxygenation Under KCl-NaCl-YCl3 System Using Soluble Anode" Metals 14, no. 11: 1288. https://doi.org/10.3390/met14111288
APA StyleMu, T., Zhu, F., Zhao, Y., Fang, H., Ji, H., & Gao, L. (2024). Preparation of Titanium Metal by Deoxygenation Under KCl-NaCl-YCl3 System Using Soluble Anode. Metals, 14(11), 1288. https://doi.org/10.3390/met14111288