The Effects of Straw-Returning Processes on the Formation of Fe-Mn (Hydr)oxide Colloids and Arsenic Bioavailability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation and Characterization of SD-Fe/Mn Colloids
2.3. Colloid Deposition Kinetics
2.4. Column Experiments
2.5. Quality Control and Data Analysis
3. Results
3.1. Morphological Distribution of SD-Fe/Mn Colloids
3.2. Migration of SD-Fe/Mn Colloids
3.3. Deposition of SD-Fe/Mn Colloids
3.4. Effect of SD-Fe/Mn on Arsenic Migration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Chen, L.H.; Peng, L.; Luo, S.; Zeng, Q.R. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 2020, 247, 125856. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Yadav, R.; Sharma, S.; Singh, A.N. Arsenic contamination in the food chain: A threat to food security and human health. J. Appl. Biol. Biotechnol. 2023, 11, 24–33. [Google Scholar] [CrossRef]
- Yi, K.; Fan, W.; Chen, J.; Jiang, S.; Huang, S.; Peng, L.; Zeng, Q.; Luo, S. Annual input and output fluxes of heavy metals to paddy fields in four types of contaminated areas in Hunan Province, China. Sci. Total Environ. 2018, 634, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Moulick, D.; Samanta, S.; Sarkar, S.; Mukherjee, A.; Pattnaik, B.K.; Saha, S.; Awasthi, J.P.; Bhowmick, S.; Ghosh, D.; Samal, A.C.; et al. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Sci. Total Environ. 2021, 800, 149477. [Google Scholar] [CrossRef]
- Zhu, Y.; Williams, P.N.; Meharg, A.A. Exposure to inorganic arsenic from rice: A global health issue? Environ. Pollut. 2008, 154, 169–171. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Wei, X.; Peng, H.; Hu, L.; Zhu, X. Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review. Sci. Total Environ. 2024, 951, 175500. [Google Scholar] [CrossRef]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning—A review. J. Environ. Sci. Heal. Part A 2006, 41, 2399–2428. [Google Scholar] [CrossRef]
- Abdul, K.S.M.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Zhao, J.-Y.; Ye, Z.-H.; Zhong, H. Rice root exudates affect microbial methylmercury production in paddy soils. Environ. Pollut. 2018, 242, 1921–1929. [Google Scholar] [CrossRef]
- Khan, S.; Wu, Y.; Zhang, X.; Hu, S.; Li, T.; Fu, Y.; Li, Q. Influence of dissolved organic matter from corn straw on Zn and cusorption to Chinese loess. Toxicol. Environ. Chem. 2013, 95, 1318–1327. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil testing for heavy metals. Commun. Soil Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Bauer, M.; Blodau, C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006, 354, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Abdelrady, A.; Sharma, S.; Sefelnasr, A.; Kennedy, M. Characterisation of the impact of dissolved organic matter on iron, manganese, and arsenic mobilisation during bank filtration. J. Environ. Manag. 2020, 258, 110003. [Google Scholar] [CrossRef]
- Bauer, M.; Blodau, C. Arsenic distribution in the dissolved, colloidal and particulate size fraction of experimental solutions rich in dissolved organic matter and ferric iron. Geochim. Cosmochim. Acta 2009, 73, 529–542. [Google Scholar] [CrossRef]
- Xu, P.; Sun, C.; Ye, X.; Xiao, W.; Zhang, Q.; Wang, Q. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 2016, 132, 94–100. [Google Scholar] [CrossRef]
- Chen, X.; He, H.; Chen, G.; Li, H. Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil. Sci. Rep. 2020, 10, 9528. [Google Scholar] [CrossRef]
- Jin, S.; Huang, Y.; Dong, C.; Bai, Y.; Pan, H.; Hu, Z. Effects of different straw returning amounts and fertilizer conditions on bacteria of rice’s different part in rare earth mining area. Sci. Rep. 2023, 13, 412. [Google Scholar] [CrossRef]
- Cui, J.; Jing, C. A review of arsenic interfacial geochemistry in groundwater and the role of organic matter. Ecotoxicol. Environ. Saf. 2019, 183, 109550. [Google Scholar] [CrossRef]
- Adusei-Gyamfi, J.; Ouddane, B.; Rietveld, L.; Cornard, J.; Criquet, J. Natural organic matter-cations complexation and its impact on water treatment: A critical review. Water Res. 2019, 160, 130–147. [Google Scholar] [CrossRef]
- Åström, M.; Corin, N. Abundance, sources and speciation of trace elements in humus-rich streams affected by Acid sulphate soils. Aquat. Geochem. 2000, 6, 367–383. [Google Scholar] [CrossRef]
- Haque, S.E.; Tang, J.; Bounds, W.J.; Burdige, D.J.; Johannesson, K.H. Arsenic geochemistry of the great dismal swamp, virginia, USA: Possible organic matter controls. Aquat. Geochem. 2007, 13, 289–308. [Google Scholar] [CrossRef]
- Li, Q.; Xie, L.; Jiang, Y.; Fortner, J.D.; Yu, K.; Liao, P.; Liu, C. Formation and stability of NOM-Mn(III) colloids in aquatic environments. Water Res. 2019, 149, 190–201. [Google Scholar] [CrossRef]
- Liao, P.; Li, W.; Jiang, Y.; Wu, J.; Yuan, S.; Fortner, J.D.; Giammar, D.E. Formation, aggregation, and deposition dynamics of NOM-Iron colloids at anoxic–oxic Interfaces. Environ. Sci. Technol. 2017, 51, 12235–12245. [Google Scholar] [CrossRef]
- Faixo, S.; Gehin, N.; Balayssac, S.; Gilard, V.; Mazeghrane, S.; Haddad, M.; Gaval, G.; Paul, E.; Garrigues, J.-C. Current trends and advances in analytical techniques for the characterization and quantification of biologically recalcitrant organic species in sludge and wastewater: A review. Anal. Chim. Acta 2021, 1152, 338284. [Google Scholar] [CrossRef]
- Wen, L.; Xuan, L.; Chunxiao, H.; Li, G.; Haiming, W.; Ming, L. A new view into three-dimensional excitation-emission matrix fluorescence spectroscopy for dissolved organic matter. Sci. Total Environ. 2023, 855, 158963. [Google Scholar] [CrossRef]
- Zheng, J.; Xie, Y.; Ping, Y.; Xu, H.; Li, Q.; Liao, Q.; Li, Q.; Yang, Z.; Yang, W.; Si, M. Crystal phase conversion of amorphous Fe-Mn binary oxides promote the sequestration and redistribution of arsenic, cadmium, and lead in the soil: Comparison with crystalline form. J. Environ. Chem. Eng. 2024, 12, 113342. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Qian, A.; Yu, C.; Zhang, P.; Yuan, S. Effect of C/Fe Molar Ratio on H2O2 and •OH Production during Oxygenation of Fe(II)-Humic Acid Coexisting Systems. Environ. Sci. Technol. 2022, 56, 13408–13418. [Google Scholar] [CrossRef]
- Jeewani, P.H.; Ling, L.; Fu, Y.; Van Zwieten, L.; Zhu, Z.; Ge, T.; Guggenberger, G.; Luo, Y.; Xu, J. The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes. Geoderma 2021, 383, 114769. [Google Scholar] [CrossRef]
- Li, H.; Santos, F.; Butler, K.; Herndon, E. A critical review on the multiple roles of manganese in stabilizing and destabilizing soil organic matter. Environ. Sci. Technol. 2021, 55, 12136–12152. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, M.; Li, Q.; Yang, W. The formation and stability of HA–Fe/Mn colloids in saturated porous media. Environments 2024, 11, 136. [Google Scholar] [CrossRef]
- Yan, M.; Liu, C.; Wang, D.; Ni, J.; Cheng, J. Characterization of adsorption of humic acid onto alumina using quartz crystal microbalance with dissipation. Langmuir 2011, 27, 9860–9865. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xu, S.; Liu, Q.; Masliyah, J.; Xu, Z. QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci. 2016, 233, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Fei, Y.; Yang, X.; Liang, T.; Zhong, L. Enhanced delivery of engineered Fe-Mn binary oxides in heterogeneous porous media for efficient arsenic stabilization. J. Hazard. Mater. 2022, 424, 127371. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef]
- Sun, P.; Shijirbaatar, A.; Fang, J.; Owens, G.; Lin, D.; Zhang, K. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Sci. Total Environ. 2015, 505, 189–198. [Google Scholar] [CrossRef]
- Grossl, P.R.; Inskeep, W.P. Characterization of the hydrophobic acid fraction isolated from a wheat straw extract. Soil Sci. Soc. Am. J. 1996, 60, 158–162. [Google Scholar] [CrossRef]
- Lapierre, C. Determining lignin structure by chemical degradations. In Lignin and Lignans: Advances in Chemistry; CRC Press: Boca Raton, FL, USA, 2010; pp. 11–48. [Google Scholar]
- Heil, D.; Sposito, G. Organic matter role in illitic soil colloids flocculation: II. Surface charge. Soil Sci. Soc. Am. J. 1993, 57, 1246–1253. [Google Scholar] [CrossRef]
- Fatisson, J.; Domingos, R.F.; Wilkinson, K.J.; Tufenkji, N. Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 2009, 25, 6062–6069. [Google Scholar] [CrossRef]
- Arab, D.; Pourafshary, P. Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 803–814. [Google Scholar] [CrossRef]
- Liao, Q.; He, L.; Tu, G.; Yang, Z.; Yang, W.; Tang, J.; Cao, W.; Wang, H. Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate-and phosphate-based bio-nanocomposite: Effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation. Chemosphere 2021, 266, 128960. [Google Scholar] [CrossRef]
- Umair, M.; Zafar, S.H.; Cheema, M.; Usman, M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. J. Environ. Manag. 2024, 349, 119553. [Google Scholar] [CrossRef]
Area | Ex (nm) | Em (nm) | Type | |
---|---|---|---|---|
SD | I | 220–320 | 250–350 | Soluble microbial byproduct-like |
II | 205–225 | 275–350 | Aromatic protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Jiang, M.; Li, Q.; Yang, Z.; Liao, Q.; Si, M.; Yang, W. The Effects of Straw-Returning Processes on the Formation of Fe-Mn (Hydr)oxide Colloids and Arsenic Bioavailability. Metals 2024, 14, 1289. https://doi.org/10.3390/met14111289
Zheng J, Jiang M, Li Q, Yang Z, Liao Q, Si M, Yang W. The Effects of Straw-Returning Processes on the Formation of Fe-Mn (Hydr)oxide Colloids and Arsenic Bioavailability. Metals. 2024; 14(11):1289. https://doi.org/10.3390/met14111289
Chicago/Turabian StyleZheng, Junhao, Mei Jiang, Qingzhu Li, Zhihui Yang, Qi Liao, Mengying Si, and Weichun Yang. 2024. "The Effects of Straw-Returning Processes on the Formation of Fe-Mn (Hydr)oxide Colloids and Arsenic Bioavailability" Metals 14, no. 11: 1289. https://doi.org/10.3390/met14111289
APA StyleZheng, J., Jiang, M., Li, Q., Yang, Z., Liao, Q., Si, M., & Yang, W. (2024). The Effects of Straw-Returning Processes on the Formation of Fe-Mn (Hydr)oxide Colloids and Arsenic Bioavailability. Metals, 14(11), 1289. https://doi.org/10.3390/met14111289