An Analysis of Dynamic Recrystallization During the Reduction Pretreatment Process Using a Multiscale Model
Abstract
:1. Introduction
2. Model Development
2.1. Multiphase Field Model
2.2. UMAT Subroutine
2.3. Model Coupling
3. Simulation Parameters and Conditions
3.1. Single-Element Hot Compression Simulation
3.2. Reduction Pretreatment (RP) Process
4. Results and Discussion
4.1. Single-Element Hot Compression Simulation
4.2. Effect of Reduction Amount
4.3. Effect of Billet Surface Temperature
5. Conclusions
- In this study, we successfully developed a multiscale model that couples the finite element method (FEM) with the multiphase field model (MPFM) through secondary development within Abaqus. The model accurately describes both macroscopic mechanical behavior and microstructural evolution during hot deformation, exhibiting high predictive accuracy, especially in simulations of dynamic recrystallization (DRX).
- The findings reveal that, under the same billet surface temperature, increasing the reduction ratio significantly enhances the plastic strain and dynamic recrystallization volume fraction while concurrently reducing the grain size. When the reduction ratio is increased from 6.67% to 20.0%, the DRX volume fraction at the billet core rises from 0.009 to 0.682, while the grain size decreases from 121 μm to 67 μm.
- Under the same reduction ratio, increasing the billet surface temperature enhances both the plastic strain and dynamic recrystallization volume fraction in the billet core. Specifically, when the billet surface temperature increases from 900 °C to 1000 °C, the dynamic recrystallization volume fraction in the core rises from 0.029 to 0.36, and the plastic strain increases from 0.173 to 0.183.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Yu, W.; Cai, Q. Investigation of reduction pretreatment process for continuous casting. J. Mater. Process. Technol. 2016, 227, 41–48. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Q.; Li, G.; Yu, W. Effects of Reduction Pretreatment on the Internal Quality of Casting Billets. Steel Res. Int. 2017, 88, 1600337. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Li, R.; Gong, M.; Wang, Z.; Wang, G. Effect of a Novel Hot-core Heavy Reduction Rolling Process after Complete Solidification on Deformation and Microstructure of Casting Steel. ISIJ Int. 2019, 59, 2283–22930. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Li, R.; Wang, Z.; Wang, G. Work Roll Surface Profile Design and Optimization for Hot-core Heavy Reduction Rolling Process. ISIJ Int. 2019, 59, 1314–1322. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Li, R.; Wang, Z.; Wang, G. Analysis of ductile fractures at the surface of continuous casting steel during hot-core heavy reduction rolling. J. Mater. Process. Technol. 2020, 283, 116713. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, H.; Liu, Y.; Ning, Z.; Li, M.; Yu, W.; Cai, Q. Effects of Deformation Penetration and Recrystallization on the Internal Quality of Casting Ingot. Steel Res. Int. 2024, 95, 2300422. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, A.; Yu, W. Effects of Gradient Temperature Field on the Internal Quality of Casting Ingot. Metall. Mater. Trans. B 2024, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Gong, M.; Li, T.; Wang, Z.; Wang, G. Effects of hot-core heavy reduction rolling during continuous casting on microstructures and mechanical properties of hot-rolled plates. J. Mater. Process. Technol. 2020, 283, 116708. [Google Scholar] [CrossRef]
- Li, R.; Li, H.; Wang, L.; Wang, G.; Li, J.; Li, J. Influence of hot-core heavy reduction rolling on microstructure uniformity of casting billet. Ironmak. Steelmak. 2022, 50, 273–285. [Google Scholar] [CrossRef]
- Naghdy, S.; Akbarzadeh, A. Characterization of dynamic recrystallization parameters for a low carbon resulfurized free-cutting steel. Mater. Des. 2014, 53, 910–914. [Google Scholar] [CrossRef]
- Momeni, A.; Dehghani, K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps. Mater. Sci. Eng. A-Struct. 2010, 527, 5467–5473. [Google Scholar] [CrossRef]
- He, X.; Yu, Z.; Lai, X. A method to predict flow stress considering dynamic recrystallization during hot deformation. Comput. Mater. Sci. 2008, 44, 760–764. [Google Scholar] [CrossRef]
- Wu, B.; Li, M.Q.; Ma, D.W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Mater. Sci. Eng. A-Struct. 2012, 542, 79–87. [Google Scholar] [CrossRef]
- Ji, H.; Liu, J.; Wang, B.; Tang, X.; Lin, J.; Huo, Y. Microstructure evolution and constitutive equations for the high-temperature deformation of 5Cr21Mn9Ni4N heat-resistant steel. J. Alloys Compd. 2017, 693, 674–687. [Google Scholar] [CrossRef]
- Saadatkia, S.; Mirzadeh, H.; Cabrera, J. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater. Sci. Eng. A-Struct. 2015, 636, 196–202. [Google Scholar] [CrossRef]
- Bharath, K.; Khanra, A.K.; Davidson, M.J. Hot deformation behavior and dynamic recrystallization constitutive modeling of Al–Cu–Mg powder compacts processed by extrusion at elevated temperatures. Proc. Inst. Mech. Eng. Part L J. Mater. 2021, 235, 581–596. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, J.; Liang, Y.; Wu, P. Monte-Carlo-assisted phase field simulations of grain structure evolution during the welding process. Metals 2023, 13, 623. [Google Scholar] [CrossRef]
- Wermiński, M.; Perzyński, K.; Sitko, M.; Madej, L. Evaluation of data transfer influence in coupled Monte Carlo finite element model on microstructure evolution predictions. Mater. Res. Proc. 2023, 28, 1551–1558. [Google Scholar]
- Yu, P.; Wu, C.; Shi, L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater. 2021, 207, 116692. [Google Scholar] [CrossRef]
- Svyetlichnyy, D. Frontal cellular automata for modelling microstructure evolution: Computational complexity analysis. Comput. Mater. Sci. 2023, 230, 112478. [Google Scholar] [CrossRef]
- Łach, Ł. Modeling of Microstructure Evolution during Deformation Processes by Cellular Automata—Boundary Conditions and Space Reorganization Aspects. Materials 2021, 14, 1377. [Google Scholar] [CrossRef] [PubMed]
- Sitko, M.; Banaś, K.; Madej, L. Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial calculations. Materials 2021, 14, 4082. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, Y.; Ahmad, A.S. A novel simulation of continuous dynamic recrystallization process for 2219 aluminium alloy using cellular automata technique. Mater. Sci. Eng. A-Struct. 2021, 815, 141256. [Google Scholar] [CrossRef]
- Takaki, T.; Hisakuni, Y.; Hirouchi, T.; Yamanaka, A.; Tomita, Y. Multi-phase-field simulations for dynamic recrystallization. Comput. Mater. Sci. 2009, 45, 881–888. [Google Scholar] [CrossRef]
- Takaki, T.; Yamanaka, A.; Tomita, Y. Phase-Field Modeling for Dynamic Recrystallization; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lyu, X.; Tian, C.; Shi, L.; Wu, C.; Chen, J.; Yu, P. Multi-scale modelling of the microstructure evolution during friction stir welding of 2195 Al–Li alloy. J. Mater. Res. Technol. 2024, 28, 1318–1329. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Huang, S.; Zhang, H.; Chen, Q.; Zhang, C.; Du, Z. Multi-scale modeling and simulation for multi-pass processing of Ta-2.5 W alloy. Int. J. Mech. Sci. 2022, 218, 107069. [Google Scholar] [CrossRef]
- Won Lee, H.; Im, Y. Numerical modeling of dynamic recrystallization during nonisothermal hot compression by cellular automata and finite element analysis. Int. J. Mech. Sci. 2010, 52, 1277–1289. [Google Scholar] [CrossRef]
- Shabaniverki, S.; Serajzadeh, S. Simulation of softening kinetics and microstructural events in aluminum alloy subjected to single and multi-pass rolling operations. Appl. Math. Model. 2016, 40, 7571–7582. [Google Scholar] [CrossRef]
- Lin, X.; Zou, X.; An, D.; Krakauer, B.W.; Zhu, M. Multi-Scale Modeling of Microstructure Evolution during Multi-Pass Hot-Rolling and Cooling Process. Materials 2021, 14, 2947. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Outeiro, J.; Xu, B.; Zhao, W. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. J. Mater. Process. Technol. 2020, 286, 116834. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, H.; Chen, W.; Ou, H.; Cui, Z. Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method. Int. J. Plast. 2021, 145, 103064. [Google Scholar] [CrossRef]
- Takaki, T.; Yoshimoto, C.; Yamanaka, A.; Tomita, Y. Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior. Int. J. Plast. 2014, 52, 105–116. [Google Scholar] [CrossRef]
- Yoshimoto, C.; Takaki, T. Multiscale hot-working simulations using multi-phase-field and finite element dynamic recrystallization model. ISIJ Int. 2014, 54, 452–459. [Google Scholar] [CrossRef]
- Peczak, P.; Luton, M.J. The effect of nucleation models on dynamic recrystallization II. Heterogeneous stored-energy distribution. Philos. Mag. B 1993, 68, 115–144. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Ning, Z.; Yu, W.; Liu, H.Q.; Cai, Q.W. Effect of reduction pretreatment process on evolution of micro-porosity in 42CrMo billet. J. Iron Steel Res. Int. 2020, 28, 413–423. [Google Scholar] [CrossRef]
- Jonas, J.J.; Quelennec, X.; Jiang, L.; Martin, É. The Avrami kinetics of dynamic recrystallization. Acta Mater. 2009, 57, 2748–2756. [Google Scholar] [CrossRef]
- Kocks, U.F. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. 1976, 98, 76–85. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U.F. A Mechanism for Static and Dynamic Recovery. In Proceedings of the 5th International Conference, Aachen, Germany, 27–31 August 1979; pp. 345–350. [Google Scholar]
- Mecking, H.; Kocks, U.F. Kinetics of Flow and Strain-Hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Derby, B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall. Mater. 1991, 39, 955–962. [Google Scholar] [CrossRef]
- Derby, B. Dynamic recrystallisation: The steady state grain size. Scr. Metall. Mater. 1992, 27, 1581–1585. [Google Scholar] [CrossRef]
SDVs | Significance |
---|---|
1~4 | Elastic deformation tensor (, , , ) |
5~8 | Plastic deformation tensor (, , , ) |
9 | Equivalent strain |
10 | Equivalent strain increment |
13 | Dynamic recrystallization volume fraction |
14 | Grain size |
C | Si | Mn | Cr | Mo | Ni | Cu | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.39 | 0.24 | 0.72 | 1.12 | 0.189 | 0.09 | 0.01 | 0.012 | 0.004 | bal |
Parameter Name, Symbol | Parameter Value (Unit) |
---|---|
Grid size, Δx | 1 (μm) |
Grain boundary thickness, δ | 3.5 (μm) |
Grain boundary energy, γ | 0.1 (J∙m−2) |
Dislocation interaction coefficient, α | 0.5 |
Elastic modulus, E | 234.15 − 0.1015T (Gpa) |
Poisson’s ratio, | 0.2756 + 0.00006T |
Burgers vector, b | 0.258 (nm) |
Nucleation rate formula constant, C | 1.5994 × 104 |
Nucleation rate formula exponent, m | 0.3902 |
Nucleation activation energy, Qa | 8830 (J∙mol−1) |
Interface mobility constant, M0 | 1.402 (m4∙K∙J−1∙s−1) |
Initial dislocation density, ρ0 | 1 × 109 (m−2) |
Peak stress, σp | (Mpa) |
Initial stress, σ0 | (MPa) |
Critical stress, σc | (MPa) |
Parameters | Parameter Values (Unit) |
---|---|
Workpiece dimensions | 5 × 7.5 (mm) |
Friction coefficient | 0 |
Strain rate | 0.001, 0.005, 0.01, 0.05, 0.1 (s−1) |
Deformation temperature | 950, 1000, 1050, 1100, 1200 (°C) |
Total strain | 0.5 |
Mesh type | CAX8 (8 integration points) |
Number of elements | 1 |
Parameters | Parameter Value (Unit) |
---|---|
Roll diameter | 750 (mm) |
Workpiece dimensions | 300 × 75 (mm) |
Friction coefficient | 0.2 |
Rolling speed | 100 (mm/s) |
Mesh type | CPE8 |
Number of elements | 20 × 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Ning, Z.; Zhu, Y.; Yu, W. An Analysis of Dynamic Recrystallization During the Reduction Pretreatment Process Using a Multiscale Model. Metals 2024, 14, 1290. https://doi.org/10.3390/met14111290
Wu D, Ning Z, Zhu Y, Yu W. An Analysis of Dynamic Recrystallization During the Reduction Pretreatment Process Using a Multiscale Model. Metals. 2024; 14(11):1290. https://doi.org/10.3390/met14111290
Chicago/Turabian StyleWu, Die, Zhen Ning, Yanlin Zhu, and Wei Yu. 2024. "An Analysis of Dynamic Recrystallization During the Reduction Pretreatment Process Using a Multiscale Model" Metals 14, no. 11: 1290. https://doi.org/10.3390/met14111290
APA StyleWu, D., Ning, Z., Zhu, Y., & Yu, W. (2024). An Analysis of Dynamic Recrystallization During the Reduction Pretreatment Process Using a Multiscale Model. Metals, 14(11), 1290. https://doi.org/10.3390/met14111290