Three-Dimensional Printing of Metallic Parts by Means of Fused Filament Fabrication (FFF)
Abstract
:1. Introduction
2. Processes for Obtaining Metallic Parts via Material Extrusion
2.1. FDMS Process Overview
2.2. Other Material Extrusion Variants
2.2.1. FFF Using MIM Feedstock
2.2.2. FFF Using Semi-Solid Metal
2.2.3. FFF Impregnation Process
2.2.4. Direct Ink Writing (DIW)
2.2.5. Liquid Additive Manufacturing (LAM)
3. Feedstock Materials for Metallic Parts
4. Material Extrusion Machines for Metallic Parts
4.1. Metal Pack from Barcelona Three Dimensional Printers
4.2. METAL X System from Markforged
4.3. Studio System from Desktop Metal
4.4. Other Manufacturers
5. Post-Processing Operations
5.1. Thermal Treatment for Metal Pack from Barcelona Three Dimensional Printers
5.2. Thermal Treatment for METAL X System from Markforged
5.3. Thermal Treatment for Studio System from Desktop Metal
6. Properties of the 3D-Printed Metallic Parts
6.1. Dimensions and Surface Finish
6.2. Internal Structure
6.3. Mechanical Properties
6.4. Electrical Properties
6.5. Biocompatibility
7. Conclusions
- Both low- and high-metallic-content filaments are available, with a polymeric matrix. The former is mainly used for decorative purposes. The latter complies with specific requirements regarding electrical conductivity, mechanical strength, etc.
- As for the 3D printing machines, some of them are conventional ones with special metal kits, while other are directly designed to print metallic parts. Thermal treatment is often required, often comprising debinding and subsequent sintering operations.
- As a result, in the next years it can be foreseen that new developments linking FFF/FDM and direct metal 3D printing are going to bloom, if costs can be kept within a reasonable limit, due to the intrinsic advantages of eliminating intermediate steps (debinding and sintering) such as those linked to compound part mixing metals that have been explained.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO/ASTM 52900; Additive Manufacturing—General Principles—Terminology. International Organization for Standardization: Geneva, Switzerland, 2021.
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- The Top 10 Features of Makerbot Method. Available online: https://www.makerbot.com/stories/the-top-10-features-of-makerbot-method (accessed on 11 September 2024).
- Mark, A.; Hamid, M.; Nida, N. An Overview of Modern Metal Additive Manufacturing Technology. J. Manuf. Process 2022, 84, 1001–1029. [Google Scholar]
- Mishra, V.; Negi, S.; Kar, S.; Sharma, A.K.; Rajbahadur, Y.N.K.; Kumar, A. Recent Advances in Fused Deposition Modeling Based Additive Manufacturing of Thermoplastic Composite Structures: A Review. J. Thermoplast. Compos. Mater. 2023, 36, 3094–3132. [Google Scholar] [CrossRef]
- Çevik, Ü.; Kam, M. A Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production. J. Nanomater. 2020, 2020, 6187149. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef]
- 3D Systems. EXT Titan Pellet 3D Printers. Available online: https://www.3dsystems.com/ext-titan-pellet-3d-printers (accessed on 11 September 2024).
- Wang, K.; Ho, C.C.; Zhang, C.; Wang, B. A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications. Engineering 2017, 3, 653–662. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Petit-Rojo, O.; Bagheri, A.; Minguella-Canela, J. Modelling of Porosity of 3D Printed Ceramic Prostheses with Grid Structure. Procedia Manuf. 2017, 13, 770–777. [Google Scholar] [CrossRef]
- Rane, K.; Strano, M. A Comprehensive Review of Extrusion-Based Additive Manufacturing Processes for Rapid Production of Metallic and Ceramic Parts. Adv. Manuf. 2019, 7, 155–173. [Google Scholar] [CrossRef]
- Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive Manufacturing Methods and Modeling Approaches: A Critical Review. Int. J. Adv. Manuf. Technol. 2016, 83, 389–405. [Google Scholar] [CrossRef]
- Kauppila, I. The Best Metal 3D Printers in 2024. Available online: https://all3dp.com/1/3d-metal-3d-printer-metal-3d-printing/#velo3d-sapphire (accessed on 11 September 2024).
- Sargini, M.I.M.; Masood, S.H.; Palanisamy, S.; Jayamani, E.; Kapoor, A. Additive Manufacturing of an Automotive Brake Pedal by Metal Fused Deposition Modelling. Mater. Today Proc. 2021, 45, 4601–4605. [Google Scholar] [CrossRef]
- Zuniga, J.M.; Cortes, A. The Role of Additive Manufacturing and Antimicrobial Polymers in the COVID-19 Pandemic. Expert. Rev. Med. Devices 2020, 17, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Young, K.J.; Pierce, J.E.; Zuniga, J.M. Assessment of Body-Powered 3D Printed Partial Finger Prostheses: A Case Study. 3D Print. Med. 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Jiang, J.; Lv, F.; Xia, X.; Ma, X. Preparation of Antibacterial and Osteoconductive 3D-Printed PLGA/Cu(I)@ZIF-8 Nanocomposite Scaffolds for Infected Bone Repair. J. Nanobiotechnol. 2020, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.Q.; Nath, S.D.; Akilan, A.A.; Khanjar, S.; Balla, V.K.; Grant, G.T.; Atre, S.V. Investigation of Patient-Specific Maxillofacial Implant Prototype Development by Metal Fused Filament Fabrication (MF3) of Ti-6al-4v. Dent. J. 2021, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Dehghan-Manshadi, A.; Bermingham, M.J.; Dargusch, M.S.; StJohn, D.H.; Qian, M. Metal Injection Moulding of Titanium and Titanium Alloys: Challenges and Recent Development. Powder Technol. 2017, 319, 289–301. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of Am Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive Manufacturing of Ti6Al4V Alloy: A Review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Ramazani, H.; Kami, A. Metal FDM, a New Extrusion-Based Additive Manufacturing Technology for Manufacturing of Metallic Parts: A Review. Progress Addit. Manuf. 2022, 7, 609–626. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Lin, Z.; Zhang, T. Creating Metal Parts by Fused Deposition Modeling and Sintering. Mater. Lett. 2020, 263, 127252. [Google Scholar] [CrossRef]
- Strano, M.; Rane, K.; Briatico Vangosa, F.; Di Landro, L. Extrusion of Metal Powder-Polymer Mixtures: Melt Rheology and Process Stability. J. Mater. Process Technol. 2019, 273, 116250. [Google Scholar] [CrossRef]
- Singh, P.; Balla, V.K.; Tofangchi, A.; Atre, S.V.; Kate, K.H. Printability Studies of Ti-6Al-4V by Metal Fused Filament Fabrication (MF3). Int. J. Refract. Metals Hard Mater. 2020, 91, 105249. [Google Scholar] [CrossRef]
- Fafenrot, S.; Grimmelsmann, N.; Wortmann, M.; Ehrmann, A. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling. Materials 2017, 10, 1199. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Reyes, E.I.; Moon, K.-S.; Rumpf, R.C.; Kim, N.S. Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 2015, 44, 771–777. [Google Scholar] [CrossRef]
- Wu, G.; Langrana, N.A.; Sadanji, R.; Danforth, S. Solid Freeform Fabrication of Metal Components Using Fused Deposition of Metals. Mater. Des. 2002, 23, 97–105. [Google Scholar] [CrossRef]
- Nurhudan, A.I.; Supriadi, S.; Whulanza, Y.; Saragih, A.S. Additive Manufacturing of Metallic Based on Extrusion Process: A Review. J. Manuf. Process 2021, 66, 228–237. [Google Scholar] [CrossRef]
- Roshchupkin, S.I.; Golovin, V.I.; Kolesov, A.G.; Tarakhovskiy, A.Y. Extruder for the Production of Metal-Polymer Filament for Additive Technologies. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 022009. [Google Scholar] [CrossRef]
- Kuang, Y.; Ngai, T.L.; Luo, H.; Li, Y. SiC-Ti Layered Material Prepared by Binder-Treated Powder Sintering. J. Mater. Process Technol. 2009, 209, 4607–4610. [Google Scholar] [CrossRef]
- Ouradnik, T. Manufacturing and Characterization of Components Produced Via Fused Deposition Modeling (Fdm) Utilizing Metal Injection Molding (Mim) Feedstock with a Focus on Steel Alloy 316L. Master’s Thesis, Polytechnic University of Catalonia, Barcelona, Spain, 2019. [Google Scholar]
- Banerjee, S.; Joens, C.J. Debinding and Sintering of Metal Injection Molding (MIM) Components. In Handbook of Metal Injection Molding; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–171. [Google Scholar]
- Giberti, H.; Sbaglia, L.; Silvestri, M. Mechatronic Design for an Extrusion-Based Additive Manufacturing Machine. Machines 2017, 5, 29. [Google Scholar] [CrossRef]
- Jabbari, A.; Abrinia, K. A Metal Additive Manufacturing Method: Semi-Solid Metal Extrusion and Deposition. Int. J. Adv. Manuf. Technol. 2018, 94, 3819–3828. [Google Scholar] [CrossRef]
- Finke, S.; Feenstra, F.K. Solid Freeform Fabrication by Extrusion and Deposition of Semi-Solid Alloys. J. Mater. Sci. 2002, 37, 3101–3106. [Google Scholar] [CrossRef]
- Flores, D.; Noboa, J.; Tarapues, M.; Vizuete, K.; Debut, A.; Bejarano, L.; Streitwieser, D.A.; Ponce, S. Simple Preparation of Metal-Impregnated FDM 3D-Printed Structures. Micromachines 2022, 13, 1675. [Google Scholar] [CrossRef] [PubMed]
- Sonseca, A.; Madani, S.; Rodríguez, G.; Hevilla, V.; Echeverría, C.; Fernández-García, M.; Muñoz-Bonilla, A.; Charef, N.; López, D. Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials 2020, 10, 22. [Google Scholar] [CrossRef]
- Díaz-Marta, A.S.; Tubío, C.R.; Carbajales, C.; Fernández, C.; Escalante, L.; Sotelo, E.; Guitián, F.; Barrio, V.L.; Gil, A.; Coelho, A. Three-Dimensional Printing in Catalysis: Combining 3D Heterogeneous Copper and Palladium Catalysts for Multicatalytic Multicomponent Reactions. ACS Catal. 2018, 8, 392–404. [Google Scholar] [CrossRef]
- Ren, X.; Shao, H.; Lin, T.; Zheng, H. 3D Gel-Printing-An Additive Manufacturing Method for Producing Complex Shape Parts. Mater. Des. 2016, 101, 80–87. [Google Scholar] [CrossRef]
- Elsayed, H.; Rebesan, P.; Giacomello, G.; Pasetto, M.; Gardin, C.; Ferroni, L.; Zavan, B.; Biasetto, L. Direct Ink Writing of Porous Titanium (Ti6Al4V) Lattice Structures. Mater. Sci. Eng. C 2019, 103, 109794. [Google Scholar] [CrossRef]
- Da Linn, L.B.C.; Danas, K.; Bodelot, L. Towards 4D Printing of Very Soft Heterogeneous Magnetoactive Layers for Morphing Surface Applications via Liquid Additive Manufacturing. Polymers 2022, 14, 1684. [Google Scholar] [CrossRef]
- Agarwala, M.K.; Van Weeren, R.; Bandyopadhyay, A.; Safari, A.; Danforth, S.C.; Priedeman, W.R. Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1996; pp. 451–458. [Google Scholar]
- Colorfabb Technical Datasheet of Bronzefill. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_BronzeFill.pdf (accessed on 20 August 2023).
- Colorfabb Technical Datasheet of Steelfill. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_SteelFill.pdf (accessed on 20 August 2023).
- Colorfabb Technical Datasheet of Copperfill. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_CopperFill.pdf (accessed on 20 August 2023).
- Ultrafuse Metallic Filaments. Available online: https://forward-am.com/material-portfolio/ultrafuse-filaments-for-fused-filaments-fabrication-fff/metal-filaments/ultrafuse-316l/ (accessed on 11 September 2024).
- Cerejo, F.; Gatões, D.; Vieira, M.T. Optimization of Metallic Powder Filaments for Additive Manufacturing Extrusion (MEX). Int. J. Adv. Manuf. Technol. 2021, 115, 2449–2464. [Google Scholar] [CrossRef]
- Guessasma, S.; Belhabib, S. Effect of the Printing Angle on the Microstructure and Tensile Performance of Iron-Reinforced Polylactic Acid Composite Manufactured Using Fused Filament Fabrication. J. Manuf. Mater. Process. 2024, 8, 65. [Google Scholar] [CrossRef]
- Mousapour, M.; Salmi, M.; Klemettinen, L.; Partanen, J. Feasibility Study of Producing Multi-Metal Parts by Fused Filament Fabrication (FFF) Technique. J. Manuf. Process 2021, 67, 438–446. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F.; Uceda-Molera, R.; Elmesbahi, J.; Elmesbahi, A. Material Extrusion of 3D Printed Ceramics Parts: Parameters, Structures and Challenges. Key Eng. Mater. 2023, 958, 89–96. [Google Scholar] [CrossRef]
- Galle, J. Metal 3D Printing with Local Pre-Heating. European Patent WO 2019/166523, 6 September 2019. [Google Scholar]
- Sharma, G.K.; Pant, P.; Jain, P.K.; Kankar, P.K.; Tandon, P. Analysis of Novel Induction Heating Extruder for Additive Manufacturing Using Aluminum Filament. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2021, 235, 1961–1970. [Google Scholar] [CrossRef]
- Metal Pack of BCN3D Technologies. Available online: https://www.bcn3d.com/product/metal-pack (accessed on 11 September 2024).
- Difmaq. Available online: https://difmaq.com/ (accessed on 11 September 2024).
- Markforged. Metal X System. Available online: https://markforged.com/metal-x/ (accessed on 28 April 2024).
- Desktop Studio. Available online: https://www.desktopmetal.com/ (accessed on 28 April 2024).
- Pollen. Available online: https://www.pollen.am/pam_o2_mc (accessed on 28 April 2024).
- Lotfizarei, Z.; Mostafapour, A.; Barari, A.; Jalili, A.; Patterson, A.E. Overview of Debinding Methods for Parts Manufactured Using Powder Material Extrusion. Addit. Manuf. 2023, 61, 103335. [Google Scholar] [CrossRef]
- Kukla, C.; Cano, S.; Kaylani, D.; Schuschnigg, S.; Holzer, C.; Gonzalez-Gutierrez, J. Debinding Behaviour of Feedstock for Material Extrusion Additive Manufacturing of Zirconia. Powder Metall. 2019, 62, 196–204. [Google Scholar] [CrossRef]
- Tuncer, N.; Bose, A. Solid-State Metal Additive Manufacturing: A Review. JOM 2020, 72, 3090–3111. [Google Scholar] [CrossRef]
- Bankapalli, N.K.; Gupta, V.; Saxena, P.; Bajpai, A.; Lahoda, C.; Polte, J. Filament Fabrication and Subsequent Additive Manufacturing, Debinding, and Sintering for Extrusion-Based Metal Additive Manufacturing and Their Applications: A Review. Compos. B Eng. 2023, 264, 110915. [Google Scholar] [CrossRef]
- Opteon. Available online: https://www.opteon.com/en/products (accessed on 11 September 2024).
- Singh, S.; Singh, G.; Prakash, C.; Ramakrishna, S. Current Status and Future Directions of Fused Filament Fabrication. J. Manuf. Process 2020, 55, 288–306. [Google Scholar] [CrossRef]
- Galati, M.; Minetola, P. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts. Materials 2019, 12, 4122. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L. Accuracy Prediction in Fused Deposition Modeling. Int. J. Adv. Manuf. Technol. 2014, 73, 913–928. [Google Scholar] [CrossRef]
- Turner, B.N.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Sivatte-Adroer, M. An Experimental Investigation about the Dimensional Accuracy and the Porosity of Copper-Filled PLA Fused Filament Fabrication Parts. Metals 2023, 13, 1608. [Google Scholar] [CrossRef]
- Aisa-Puiggardeu, L. Estudi i Anàlisi de Les Propietats Mecàniques de Provetes de PLA Amb Càrrega Metàl·lica Impreses per FDM. Bachelor’s Thesis, Polytechnic University of Catalonia, Barcelona, Spain, 2022. [Google Scholar]
- Quarto, M.; Carminati, M.; D’Urso, G. Density and Shrinkage Evaluation of AISI 316L Parts Printed via FDM Process. Mater. Manuf. Process. 2021, 36, 1535–1543. [Google Scholar] [CrossRef]
- Kurose, T.; Abe, Y.; Santos, M.V.A.; Kanaya, Y.; Ishigami, A.; Tanaka, S.; Ito, H. Influence of the Layer Directions on the Properties of 316l Stainless Steel Parts Fabricated through Fused Deposition of Metals. Materials 2020, 13, 2493. [Google Scholar] [CrossRef]
- Tosto, C.; Tirillò, J.; Sarasini, F.; Cicala, G. Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts. Appl. Sci. 2021, 11, 1444. [Google Scholar] [CrossRef]
- Shaikh, M.Q.; Singh, P.; Kate, K.H.; Freese, M.; Atre, S.V. Finite Element-Based Simulation of Metal Fused Filament Fabrication Process: Distortion Prediction and Experimental Verification. J. Mater. Eng. Perform. 2021, 30, 5135–5149. [Google Scholar] [CrossRef]
- Thornagel, M. Simulating Flow Can Help Avoid Mould Mistakes. Metal. Powder Report. 2010, 65, 26–29. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Miani, F.; Veniali, F. Roughness Investigation of Steel 316L Parts Fabricated by Metal Fused Filament Fabrication. J. Manuf. Process 2022, 81, 261–280. [Google Scholar] [CrossRef]
- Buj-corral, I.; Sanz-fraile, H.; Ulldemolins, A.; Tejo-otero, A.; Dom, A.; Almendros, I.; Otero, J. Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications. Polymers 2022, 14, 2754. [Google Scholar] [CrossRef]
- Lieberwirth, C.; Harder, A.; Seitz, H. Extrusion Based Additive Manufacturing of Metal Parts. J. Mech. Eng. Autom. 2017, 7, 79–83. [Google Scholar] [CrossRef]
- Markforged 17-4 PH Datasheet. Available online: https://markforged.com/downloads/markforged_datasheet_17-4_ph_stainless_steel (accessed on 11 September 2024).
- Hassan, W.; Farid, M.A.; Tosi, A.; Rane, K.; Strano, M. The Effect of Printing Parameters on Sintered Properties of Extrusion-Based Additively Manufactured Stainless Steel 316L Parts. Int. J. Adv. Manuf. Technol. 2021, 114, 3057–3067. [Google Scholar] [CrossRef]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical Properties of Components Fabricated with Open-Source 3-D Printers under Realistic Environmental Conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef]
- Bettini, P.; Alitta, G.; Sala, G.; Di Landro, L. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic. J. Mater. Eng. Perform. 2017, 26, 843–848. [Google Scholar] [CrossRef]
- Akhoundi, B.; Behravesh, A.H.; Bagheri Saed, A. An Innovative Design Approach in Three-Dimensional Printing of Continuous Fiber–Reinforced Thermoplastic Composites via Fused Deposition Modeling Process: In-Melt Simultaneous Impregnation. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2020, 234, 243–259. [Google Scholar] [CrossRef]
- Nabipour, M.; Akhoundi, B.; Bagheri Saed, A. Manufacturing of Polymer/Metal Composites by Fused Deposition Modeling Process with Polyethylene. J. Appl. Polym. Sci. 2020, 137, 48717. [Google Scholar] [CrossRef]
- Manola, M.S.; Singh, B.; Singla, M.K.; Kumar, R. Investigation of Melt Flow Index of Dual Metal Reinforced ABS Polymer for FDM Filament Fabrication. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shamsaei, N.; Thompson, S.M.; Elwany, A.; Bian, L. Mechanical and Microstructural Properties of Selective Laser Melted 17-4 Ph Stainless Steel. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Houston, TX, USA, 13–19 November 2015; Volume 2A. [Google Scholar] [CrossRef]
- Godec, D.; Cano, S.; Holzer, C.; Gonzalez-Gutierrez, J. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel. Materials 2020, 13, 774. [Google Scholar] [CrossRef]
- Ralchev, M.; Mateev, V.; Marinova, I. 3D Printed Electrically Conductive Composites by FFF/FDM Technology. In Proceedings of the 2021 13th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 8–11 September 2021. [Google Scholar] [CrossRef]
- Konieczny, J.; Rdzawski, Z. Antibacterial Properties of Copper and Its Alloys. Arch. Mater. Sci. Eng. 2012, 56, 53–60. [Google Scholar]
- Abudula, T.; Qurban, R.O.; Bolarinwa, S.O.; Mirza, A.A.; Pasovic, M.; Memic, A. 3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Front. Bioeng. Biotechnol. 2020, 8, 568186. [Google Scholar] [CrossRef]
- Wang, B.; Han, Y.; Lin, Q.; Liu, H.; Shen, C.; Nan, K.; Chen, H. In Vitro and in Vivo Evaluation of Xanthan Gum-Succinic Anhydride Hydrogels for the Ionic Strength-Sensitive Release of Antibacterial Agents. J. Mater. Chem. B 2016, 4, 1853–1861. [Google Scholar] [CrossRef]
Technology | Process |
---|---|
Powder Bed Fusion (PBF) | Selective laser melting (SLM) |
Electron beam melting (EBM) | |
Directed Energy Deposition (DED) | Laser metal deposition (LMD) (powder-based) |
Electron Beam Additive Manufacturing (EBAM) (wire-based) | |
Wire Arc Additive Manufacturing (WAAM) (wire-based) | |
Material Extrusion (MEX) | Fused Filament Fabrication (FFF) |
Direct Ink Writing (DIW) | |
Liquid Additive Manufacturing (LAM) | |
Binder Jetting (BJT) | Nanoparticle Jetting (NPJ) |
Single-pass jetting (SPJ) | |
Supersonic deposition (SD) | |
Other | Moldjet by TRITONE |
Process | Advantages | Drawbacks |
---|---|---|
FFF | Easy process | Low dimensional accuracy |
Relatively cheap process | Poor surface finish | |
Low developing time | Distortion during sintering operations | |
Support structures required | ||
EBM | High speed | Low dimensional accuracy |
High versatility | Limited build volume | |
Ultimate tensile strength above 1100 MPa | Rough surfaces | |
No support structures required | ||
MIM | High dimensional accuracy | Need of expensive Ti powder |
Manufacture of complex parts | Limited to small parts | |
Ultimate tensile strength above 700 MPa | Mechanical strength depends on oxygen content | |
High production speed | High developing time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buj-Corral, I.; Fenollosa-Artés, F.; Minguella-Canela, J. Three-Dimensional Printing of Metallic Parts by Means of Fused Filament Fabrication (FFF). Metals 2024, 14, 1291. https://doi.org/10.3390/met14111291
Buj-Corral I, Fenollosa-Artés F, Minguella-Canela J. Three-Dimensional Printing of Metallic Parts by Means of Fused Filament Fabrication (FFF). Metals. 2024; 14(11):1291. https://doi.org/10.3390/met14111291
Chicago/Turabian StyleBuj-Corral, Irene, Felip Fenollosa-Artés, and Joaquim Minguella-Canela. 2024. "Three-Dimensional Printing of Metallic Parts by Means of Fused Filament Fabrication (FFF)" Metals 14, no. 11: 1291. https://doi.org/10.3390/met14111291
APA StyleBuj-Corral, I., Fenollosa-Artés, F., & Minguella-Canela, J. (2024). Three-Dimensional Printing of Metallic Parts by Means of Fused Filament Fabrication (FFF). Metals, 14(11), 1291. https://doi.org/10.3390/met14111291