Material Flow and Microstructural Evolution in Friction Stir Welding of LAZ931 Duplex Mg-Li Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The material flow of LAZ931 Mg-Li alloy during FSW could divided into the SAZ and the PAZ according to the deformation characteristics of the material. The material flow in both the SAZ and PAZ was weakened with increasing welding speed.
- (2)
- In the SAZ, the marker material was deformed into a strip of uneven thickness, moving closer to the keyhole, and deviating less from the center of the weld by the action of the tool as the welding speed increased; meanwhile, the tool’s ability to transfer the material decreased.
- (3)
- In the PAZ, the marker material was dispersed after FSW. With an increasing welding speed, the marked material began to form clusters post-deformation, and the increase in the amount of material transferred by the pin in a single pass resulted in a buildup of material.
- (4)
- The material on the AS was deposited on the AS to form an FGP due to the larger strain-induced DRX, and the material on the RS was deposited on the RS to form a CGP due to the lower strain and DGG effect. As the welding speed increased, there was a noticeable reduction in the volume fraction of the FGP within the SZ.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, R.; Yan, Y.; Wang, G.; Han, W.; Zhang, Z.; Zhang, M. Recent progress in magnesium–lithium alloys. Int. Mater. Rev. 2015, 60, 65–100. [Google Scholar] [CrossRef]
- Wu, L.; Cui, C.; Wu, R.; Li, J.; Zhan, H.; Zhang, M. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy. Mater. Sci. Eng. A 2011, 528, 2174–2179. [Google Scholar] [CrossRef]
- Atkins, G.; Marya, M.; Olson, D.; Eliezer, D. Magnesium-lithium alloy weldability: A microstructural characterization. JOM 2004, 6, 37–41. [Google Scholar]
- Fu, J.; Wang, Z.; Liu, W.; Yuan, J.; Jia, C.; Yang, L. Effects of heat input on microstructures and mechanical properties of LAZ931 magnesium-lithium alloy by CO2 laser welding. Mater. Today Commun. 2023, 35, 105536. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, L.-J.; Han C-q Zhang, H.-B.; Lei, X.-W.; Han, B.-F. Fiber laser welding characteristics of the butt welded joint of novel ultralight Mg-10.1Li-3.1Al-2.9Zn alloy. Mater. Res. Express 2019, 6, 106545. [Google Scholar] [CrossRef]
- Singh, K.; Singh, G.; Singh, H. Review on friction stir welding of magnesium alloys. J. Magnes. Alloy 2018, 6, 399–416. [Google Scholar] [CrossRef]
- Cao, F.R.; Ding, H.; Li, Y.L.; Zhou, G.; Cui, J.Z. Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium–lithium alloys. Mater. Sci. Eng. A 2010, 527, 2335–2341. [Google Scholar] [CrossRef]
- Padhy, G.K.; Wu, C.S.; Gao, S. Friction stir based welding and processing technologies—Processes, parameters, microstructures and applications: A review. JMST 2018, 34, 1–38. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mat. Sci. Eng. R. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Threadgill, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J. Friction stir welding of aluminium alloys. Int. Mater. Rev. 2013, 54, 49–93. [Google Scholar] [CrossRef]
- Xu, N.; Qiu, Z.; Ren, Z.; Wang, D.; Shen, J.; Song, Q.; Zhao, J.; Bao, Y. Microstructure and mechanical properties of friction stir welded ultralight Mg-14Li-1Al alloy. Mater. Charact. 2022, 194, 112463. [Google Scholar] [CrossRef]
- Liu, G.; Ma, Z.; Wei, G.; Xu, T.; Zhang, X.; Yang, Y.; Xie, W.; Peng, X. Microstructure tensile properties corrosion behavior of friction stir processed Mg-9Li-1Zn alloy. J. Mater. Process. Technol. 2019, 267, 393–402. [Google Scholar] [CrossRef]
- Tsujikawa, M.; Abe, Y.; Oki, S.; Higashi, K.; Hiraki, I.; Kamita, M. Cold-rolled Mg-14 mass% Li-1 mass% Al alloy and its friction stir welding. Mater. Trans. 2006, 47, 1077–1081. [Google Scholar] [CrossRef]
- Zhou, M.; Morisada, Y.; Fujii, H.; Wang, J.-Y. Microstructure and mechanical properties of friction stir welded duplex Mg–Li alloy LZ91. Mater. Sci. Eng. A 2020, 773, 138730. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, H.; Li, G.; Ma, L.; Zhou, L.; Zeng, R.; Li, D. Microstructure properties natural ageing behavior of friction stir welded dual-phase Mg-Li alloy. J. Mater. Process. Technol. 2024, 324, 118252. [Google Scholar] [CrossRef]
- Zhou, M.; Zeng, Z.; Cheng, C.; Morisada, Y.; Shi, Q.; Wang, J.-Y.; Fujii, H. Effect of the processing route on the microstructure mechanical behavior of superlight Mg-9Li-1Zn alloy via friction stir processing. J. Magnes. Alloy 2022, 10, 3064–3081. [Google Scholar] [CrossRef]
- Fonda, R.W.; Rowenhorst, D.J.; Knipling, K.E. 3D Material Flow in Friction Stir Welds. Metall. Mater. Trans. A 2018, 50, 655–663. [Google Scholar] [CrossRef]
- Liu, F.C.; Feng, A.H.; Pei, X.; Hovanski, Y.; Mishra, R.S.; Ma, Z.Y. Friction stir based welding, processing, extrusion and additive manufacturing. Prog. Mater. Sci. 2024, 146, 101330. [Google Scholar] [CrossRef]
- Dialami, N.; Cervera, M.; Chiumenti, M. Defect formation and material flow in Friction Stir Welding. Eur. J. Mech.—A/Solids 2020, 80, 103912. [Google Scholar] [CrossRef]
- Dialami, N.; Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Ponthot, J.P. Material flow visualization in Friction Stir Welding via particle tracing. Int. J. Mater. Form. 2013, 8, 167–181. [Google Scholar] [CrossRef]
- Li, W.Y.; Li, J.F.; Zhang, Z.H.; Gao, D.L.; Chao, Y.J. Metal Flow during Friction Stir Welding of 7075-T651 Aluminum Alloy. Exp. Mech 2013, 53, 1573–1582. [Google Scholar] [CrossRef]
- Morisada, Y.; Imaizumi, T.; Fujii, H.; Matsushita, M.; Ikeda, R. Three-Dimensional Visualization of Material Flow During Friction Stir Welding of Steel and Aluminum. J. Mater. Eng. Perform. 2014, 23, 4143–4147. [Google Scholar] [CrossRef]
- de Leon, M.; Shin, H.S. Material flow behaviours during friction stir spot welding of lightweight alloys using pin and pinless tools. Sci. Technol. Weld. Join. 2016, 21, 140–146. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Huang, J.; Lin, S.; Wu, L. Effect of welding speed on the material flow patterns in friction stir welding of AZ31 magnesium alloy. Rare Met. 2007, 26, 158–162. [Google Scholar] [CrossRef]
- Liu, X.C.; Sun, Y.F.; Nagira, T.; Ushioda, K.; Fujii, H. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Sci. Technol. Weld. Join. 2019, 24, 352–359. [Google Scholar] [CrossRef]
- Liu, X.C.; Wu, C.S. Material flow in ultrasonic vibration enhanced friction stir welding. J. Mater. Process. Technol. 2015, 225, 32–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, H.; Huang, L.; Wang, L.; Sun, Y.; Guan, S. Microstructure and Mechanical Properties of Friction Stir Welded LAZ931 Duplex Mg-Li Alloy Plates. J. Mater. Eng. Perform. 2023, in press. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Padhy, G.K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scr. Mater. 2015, 102, 95–98. [Google Scholar] [CrossRef]
- Chang, C.I.; Lee, C.J.; Huang, J.C. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr. Mater. 2004, 51, 509–514. [Google Scholar] [CrossRef]
Materials | Alloy Composition (wt.%) | |||
---|---|---|---|---|
Mg | Li | Al | Zn | |
Pure Mg | 99.99 | - | ||
LAZ931 | 86.7 | 8.9 | 3.5 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Cao, W.; Zhang, Q.; Wang, L.; Sun, Y.; Guan, S. Material Flow and Microstructural Evolution in Friction Stir Welding of LAZ931 Duplex Mg-Li Alloys. Metals 2024, 14, 1305. https://doi.org/10.3390/met14111305
Cui S, Cao W, Zhang Q, Wang L, Sun Y, Guan S. Material Flow and Microstructural Evolution in Friction Stir Welding of LAZ931 Duplex Mg-Li Alloys. Metals. 2024; 14(11):1305. https://doi.org/10.3390/met14111305
Chicago/Turabian StyleCui, Shiquan, Wenguan Cao, Qi Zhang, Liguo Wang, Yufeng Sun, and Shaokang Guan. 2024. "Material Flow and Microstructural Evolution in Friction Stir Welding of LAZ931 Duplex Mg-Li Alloys" Metals 14, no. 11: 1305. https://doi.org/10.3390/met14111305
APA StyleCui, S., Cao, W., Zhang, Q., Wang, L., Sun, Y., & Guan, S. (2024). Material Flow and Microstructural Evolution in Friction Stir Welding of LAZ931 Duplex Mg-Li Alloys. Metals, 14(11), 1305. https://doi.org/10.3390/met14111305