Fabrication and Processing of Magnesium-Based Metal Matrix Nanocomposites for Bioabsorbable Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Diopside BG
2.2. Casting of MMNC
2.3. Ultrasonic Melt Processing
2.4. Heat Treatment
2.5. Hot Rolling
2.6. Microstructural Characterization
2.7. Compression Testing
2.8. Electrochemical Corrosion Testing
2.9. Immersion Testing
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paiva, J.C.C.; Oliveira, L.; Vaz, M.F.; Costa-De-Oliveira, S. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections—A Systematic Review. Bioengineering 2022, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A. Bioabsorbable polymeric materials for biofilms and other biomedical applications: Recent and future trends. Mater. Today Proc. 2021, 44, 2447–2453. [Google Scholar] [CrossRef]
- Hayes, J.S.; Richards, R. The use of titanium and stainless steel in fracture fixation. Expert Rev. Med. Devices 2010, 7, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Disegi, J.; Eschbach, L. Stainless steel in bone surgery. Injury 2000, 31, D2–D6. [Google Scholar] [CrossRef]
- Moghaddam, N.S.; Jahadakbar, A.; Amerinatanzi, A.; Skoracki, R.; Miller, M.; Dean, D.; Elahinia, M. Fixation release and the bone bandaid: A new bone fixation device paradigm. Bioengineering 2017, 4, 5. [Google Scholar] [CrossRef]
- Xiu, P.; Jia, Z.; Lv, J.; Yin, C.; Cheng, Y.; Zhang, K.; Song, C.; Leng, H.; Zheng, Y.; Cai, H.; et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl. Mater. Interfaces 2016, 8, 17964–17975. [Google Scholar] [CrossRef]
- Moghaddam, N.S.; Andani, M.T.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. Metals for bone implants: Safety, design, and efficacy. Biomanuf. Rev. 2016, 1, 1. [Google Scholar]
- Savarino, L.; Maci, G.S.; Greco, M.; Baldini, N.; Giunti, A. Metal ion release from fracture fixation devices: A potential marker of implant failure. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2008, 86, 389–395. [Google Scholar] [CrossRef]
- Blumenthal, N.C.; Posner, A.S.; Cosma, V.; Gross, U. The effect of glass–ceramic bone implant materials on the in vitro formation of hydroxyapatite. J. Biomed. Mater. Res. 1988, 22, 1033–1041. [Google Scholar] [CrossRef]
- Ibrahim, H.; Esfahani, S.N.; Poorganji, B.; Dean, D.; Elahinia, M. Resorbable bone fixation alloys, forming, and post-fabrication treatments. Mater. Sci. Eng. C 2017, 70, 870–888. [Google Scholar] [CrossRef]
- Reyes, C.D.; Petrie, T.A.; Burns, K.L.; Schwartz, Z.; García, A.J. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007, 28, 3228–3235. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Agholme, F.; Aspenberg, P.; Tengvall, P. Surface immobilized zoledronate improves screw fixation in rat bone: A new method for the coating of metal implants. J. Mater. Sci. Mater. Med. 2010, 21, 3029–3037. [Google Scholar] [CrossRef] [PubMed]
- Savaedi, Z.; Mirzadeh, H.; Aghdam, R.M.; Mahmudi, R. Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium. J. Mater. Res. Technol. 2022, 19, 3100–3109. [Google Scholar] [CrossRef]
- Ma, N.; Peng, Q.; Li, X.; Li, H.; Zhang, J.; Tian, Y. Influence of scandium on corrosion properties and electrochemical behaviour of mg alloys in different media. Int. J. Electrochem. Sci. 2012, 7, 8020–8034. [Google Scholar] [CrossRef]
- Mushahary, D.; Sravanthi, R.; Li, Y.; Kumar, M.J.; Harishankar, N.; Hodgson, P.D.; Wen, C.; Pande, G. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int. J. Nanomed. 2013, 8, 2887–2902. [Google Scholar]
- Thakur, B.; Barve, S.; Pesode, P. Investigation on mechanical properties of AZ31B magnesium alloy manufactured by stir casting process. J. Mech. Behav. Biomed. Mater. 2023, 138, 105641. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Deepakaravind, V.; Gopal, P.; Azhagiri, P. Analysis the mechanical properties and material characterization on magnesium metal matrix nano composites through stir casting process. Mater. Today Proc. 2021, 46, 7436–7441. [Google Scholar] [CrossRef]
- Ponappa, K.; Aravindan, S.; Rao, P. Magnesium Metal-Matrix Composites–Types and Fabrication Approaches. In Advances in Corrosion Control of Magnesium and Its Alloys; CRC Press: Boca Raton, FL, USA, 2023; pp. 23–34. [Google Scholar]
- Arora, G.S.; Saxena, K.K.; Mohammed, K.A.; Prakash, C.; Dixit, S. Manufacturing techniques for Mg-Based metal matrix composite with different reinforcements. Crystals 2022, 12, 945. [Google Scholar] [CrossRef]
- Yin, Z.; Le, Q.; Chen, X.; Jia, Y. The grain refinement of Mg alloy subjected to dual-frequency ultrasonic melt treatment: A physical and numerical simulation. J. Mater. Res. Technol. 2022, 21, 1554–1569. [Google Scholar] [CrossRef]
- Hu, W.; Le, Q.; Liao, Q.; Wang, T. Effects of Ultrasonic Treatment on Grain Refinement and Gas Removal in Magnesium Alloys. Crystals 2024, 14, 237. [Google Scholar] [CrossRef]
- Eskin, G. Cavitation mechanism of ultrasonic melt degassing. Ultrason. Sonochem. 1995, 2, S137–S141. [Google Scholar] [CrossRef]
- Lebon, G.B.; Tzanakis, I.; Pericleous, K.; Eskin, D.; Grant, P.S. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming. Ultrason. Sonochem. 2019, 55, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Fatemi-Varzaneh, S.; Zarei-Hanzaki, A.; Haghshenas, M. The room temperature mechanical properties of hot-rolled AZ31 magnesium alloy. J. Alloys Compd. 2009, 475, 126–130. [Google Scholar] [CrossRef]
- Cao, F.; Shi, Z.; Song, G.-L.; Liu, M.; Dargusch, M.S.; Atrens, A. Influence of hot rolling on the corrosion behavior of several Mg–X alloys. Corros. Sci. 2015, 90, 176–191. [Google Scholar] [CrossRef]
- He, F.; Lu, T.; Fang, X.; Li, Y.; Zuo, F.; Deng, X.; Ye, J. Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration. Mater. Sci. Eng. C 2020, 112, 110892. [Google Scholar] [CrossRef]
- Bornapour, M.; Celikin, M.; Cerruti, M.; Pekguleryuz, M. Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater. Sci. Eng. C 2014, 35, 267–282. [Google Scholar] [CrossRef]
- Bian, D.; Chu, X.; Xiao, J.; Tong, Z.; Huang, H.; Jia, Q.; Liu, J.; Li, W.; Yu, H.; He, Y.; et al. Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof. Bioact. Mater. 2023, 22, 180–200. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.; Bian, D.; Wang, M.; Lin, Z.; Chu, X.; Li, W.; Liu, Y.; Shen, Z.; Liu, Y.; et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomater. 2019, 98, 50–66. [Google Scholar] [CrossRef]
- Sheweita, S.; Khoshhal, K. Calcium metabolism and oxidative stress in bone fractures: Role of antioxidants. Curr. Drug Metab. 2007, 8, 519–525. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014, 10, 2834–2842. [Google Scholar] [CrossRef]
- Hing, K.A.; Revell, P.A.; Smith, N.; Buckland, T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 2006, 27, 5014–5026. [Google Scholar] [CrossRef] [PubMed]
- ASTM E112–24; Standard Test Methods for Detemining Average Grain Size. ASTM: West Conshohocken, PA, USA, 2024.
- ASTM E9; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM: West Conshohocken, PA, USA, 2019.
- ASTM G59–97; Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM: West Conshohocken, PA, USA, 2023.
- ASTM G31; Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM: West Conshohocken, PA, USA, 2021.
- Lei, Y.; Zhan, M.; Xin, H.; Ma, L.; Yuan, Y.; Zhang, H.; Zheng, Z. Comparison of the Strain Rate Sensitivity in AZ31 and WE43 Magnesium Alloys under Different Loading Conditions. Crystals 2023, 13, 554. [Google Scholar] [CrossRef]
- Elias, A.C. Principles and Presentation of Corrosion; Jones, D.A., Ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Feliu, S., Jr. Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Kirkland, N.; Birbilis, N.; Staiger, M. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Bagha, P.S.; Paternoster, C.; Khakbiz, M.; Sheibani, S.; Gholami, N.; Mantovani, D. Surface Modification of an Absorbable Bimodal Fe-Mn-Ag Alloy by Nitrogen Plasma Immersion Ion Implantation. Materials 2023, 16, 1048. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Khavari, M.; Subroto, T.; Prentice, P.; Pericleous, K.; Eskin, D.; Durodola, J.; Tzanakis, I. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. Ultrason. Sonochemistry 2021, 79, 105792. [Google Scholar] [CrossRef]
- Kudryashova, O.; Vorozhtsov, S.; Khrustalyov, A.; Stepkina, M. Ultrasonic dispersion of agglomerated particles in metal melt. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016. [Google Scholar]
- Saha, P.; Roy, M.; Datta, M.K.; Lee, B.; Kumta, P.N. Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium. Mater. Sci. Eng. C 2015, 57, 294–303. [Google Scholar] [CrossRef]
- Aung, N.N.; Zhou, W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 2010, 52, 589–594. [Google Scholar] [CrossRef]
- Emadi, P.; Andilab, B.; Ravindran, C. Effects of sonication amplitude on the microstructure and mechanical properties of AZ91E magnesium alloy. J. Magnes. Alloys 2022, 10, 3397–3405. [Google Scholar] [CrossRef]
- Razavi, M.; Huang, Y. Effect of hydroxyapatite (HA) nanoparticles shape on biodegradation of Mg/HA nanocomposites processed by high shear solidification/equal channel angular extrusion route. Mater. Lett. 2020, 267, 127541. [Google Scholar] [CrossRef]
- Yang, Z.; Fan, J.; Liu, Y.; Nie, J.; Yang, Z.; Kang, Y. Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites. Materials 2021, 14, 675. [Google Scholar] [CrossRef] [PubMed]
- Gerashi, E.; Alizadeh, R.; Langdon, T.G. Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review. J. Magnes. Alloys 2022, 10, 313–325. [Google Scholar] [CrossRef]
- Chen, H.; He, Z.; Lu, L. Correlation of surface features with corrosion behaviors of interstitial free steel processed by temper rolling. J. Mater. Sci. Technol. 2020, 36, 37–44. [Google Scholar] [CrossRef]
- Xu, H.; Tian, T.; Hua, B.; Zhan, W.; Niu, L.; Han, B.; Zhang, Q. Effect of in-situ rolling and heat treatment on microstructure, mechanical and corrosion properties of wire-arc additively manufactured 316L stainless steel. J. Mater. Res. Technol. 2023, 27, 3349–3361. [Google Scholar] [CrossRef]
- Deng, B.; Dai, Y.; Lin, J.; Zhang, D. Effect of rolling treatment on microstructure, mechanical properties, and corrosion properties of WE43 alloy. Materials 2022, 15, 3985. [Google Scholar] [CrossRef]
- Cao, C.-N.; Zhang, J.-Q. An Introduction to Electrochemical Impedance Spectroscopy; Science Press: Beijing, China, 2002. [Google Scholar]
- Han, L.; Zhang, Z.; Dai, J.; Li, X.; Bai, J.; Huang, Z.; Guo, C.; Xue, F.; Chu, C. In vitro bio-corrosion behaviors of biodegradable AZ31B magnesium alloy under static stresses of different forms and magnitudes. J. Magnes. Alloys 2023, 11, 1043–1056. [Google Scholar] [CrossRef]
- Mei, D.; Lamaka, S.V.; Lu, X.; Zheludkevich, M.L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals—A critical review. Corros. Sci. 2020, 171, 108722. [Google Scholar] [CrossRef]
- Mena-Morcillo, E.; Veleva, L. Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: Effect of surface layer stability on electrochemical behaviour. J. Magnes. Alloys 2020, 8, 667–675. [Google Scholar] [CrossRef]
- Sanchez, A.H.M.; Luthringer, B.J.; Feyerabend, F.; Willumeit, R. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015, 13, 16–31. [Google Scholar] [CrossRef]
- Myrissa, A.; Agha, N.A.; Lu, Y.; Martinelli, E.; Eichler, J.; Szakács, G.; Kleinhans, C.; Willumeit-Römer, R.; Schäfer, U.; Weinberg, A.-M. In vitro and in vivo comparison of binary Mg alloys and pure Mg. Mater. Sci. Eng. C 2016, 61, 865–874. [Google Scholar] [CrossRef]
- Walker, J.; Shadanbaz, S.; Kirkland, N.T.; Stace, E.; Woodfield, T.; Staiger, M.P.; Dias, G.J. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1134–1141. [Google Scholar] [CrossRef]
Samples | UCS (MPa) | Yield (MPa) | Elong (%) |
---|---|---|---|
WE43 | 393 ± 2.8 | 209 ± 8.71 | 17.02 ± 0.74 |
Mg | 159 ± 11.42 | 27.99 ± 12.05 | 22.49 ± 5.168 |
UST MMNC | 272.2 ± 21.58 | 59.6 ± 16.3 | 40.44 ± 7.367 |
UST Rolled MMNC | 292.2 ± 13.24 | 135.5 ± 14.49 | 21.92 ± 2.508 |
Unprocessed MMNC | 257.5 ± 17.79 | 40.6 ± 9.198 | 44.44 ± 4.346 |
Composition | Rs (Ohm·cm2) | Rp (Ohm·cm2) | Q1 (µF·cm−2·sn) | R2 (Ohm·cm2) | n1 | Q2 (µF·cm−2·sn) | R3 (Ohm·cm2) | n2 | χ2/|Z| |
---|---|---|---|---|---|---|---|---|---|
WE43 | 31.88 ± 11.94 | 13,006.51 ± 1072.27 | 8.38 ± 3.55 | 133.31 ± 62.45 | 0.69 ± 0.04 | 11.61 ± 2.37 | 12,873.2 ± 1074.57 | 0.85 ± 0.03 | 0.13 ± 0.12 |
Mg | 36.63 ± 14.77 | 5613.18 ± 1651.33 | 6.21 ± 2.07 | 169.02 ± 57.86 | 0.68 ± 0.06 | 15.05 ± 4.21 | 5444.17 ± 1612.98 | 0.81 ± 0.04 | 0.50 ± 0.58 |
Unprocessed MMNC | 17.16 ± 9.39 | 5474.16 ± 2969.57 | 9.89 ± 7.72 | 95.11 ± 37.3 | 0.7 ± 0.08 | 7.58 ± 2.75 | 5379.05 ± 2950.74 | 0.87 ± 0.05 | 0.27 ± 0.14 |
UST MMNC | 24.74 ± 13.08 | 6808.95 ± 1757.51 | 6.88 ± 4.02 | 133.28 ± 72.78 | 0.71 ± 0.12 | 10.3 ± 3.15 | 6675.67 ± 1721.07 | 0.83 ± 0.04 | 0.28 ± 0.29 |
UST Rolled MMNC | 91.08 ± 84.70 | 21,579.54 ± 11,839.93 | 6.25 ± 6.34 | 1365.69 ± 2545.17 | 0.71 ± 0.08 | 155.97 ± 375.88 | 20,213.85 ± 13,413.07 | 0.75 ± 0.33 | 0.19 ± 0.08 |
Samples | Day 1 | Day 3 | Day 7 | Day 10 |
---|---|---|---|---|
WE43 | 0 ± 0 | 0.37 ± 0.42 | 1.93 ± 1.82 | 0.94 ± 0.83 |
Mg | 1.27 ± 0.58 | 0.33 ± 0.35 | 0.28 ± 0.01 | 0.26 ± 0.06 |
UST MMNC | 0.92 ± 1.15 | 1.94 ± 0.86 | 7.38 ± 2.25 | 8.71 ± 3.89 |
UST Rolled MMNC | 19.35 ± 12.06 | 16.43 ± 5.14 | 19.18 ± 3.39 | 22.25 ± 2.28 |
Unprocessed MMNC | 3.10 ± 1.44 | 3.61 ± 1.68 | 32.37 ± 25.67 | 39.2 ± 4.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larraza, A.; Burke, S.; Sotoudehbagha, P.; Razavi, M. Fabrication and Processing of Magnesium-Based Metal Matrix Nanocomposites for Bioabsorbable Implants. Metals 2024, 14, 1318. https://doi.org/10.3390/met14121318
Larraza A, Burke S, Sotoudehbagha P, Razavi M. Fabrication and Processing of Magnesium-Based Metal Matrix Nanocomposites for Bioabsorbable Implants. Metals. 2024; 14(12):1318. https://doi.org/10.3390/met14121318
Chicago/Turabian StyleLarraza, Andres, Shane Burke, Pedram Sotoudehbagha, and Mehdi Razavi. 2024. "Fabrication and Processing of Magnesium-Based Metal Matrix Nanocomposites for Bioabsorbable Implants" Metals 14, no. 12: 1318. https://doi.org/10.3390/met14121318
APA StyleLarraza, A., Burke, S., Sotoudehbagha, P., & Razavi, M. (2024). Fabrication and Processing of Magnesium-Based Metal Matrix Nanocomposites for Bioabsorbable Implants. Metals, 14(12), 1318. https://doi.org/10.3390/met14121318