Effects of Melting/Casting and Thermal Treatment Surrounding Gas Phase Composition on the Properties of a Low-Alloyed Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used and Conditions Applied
2.2. Characterization Technique
2.2.1. Chemical Reagents/Etching Agents
2.2.2. Chemical Composition
2.2.3. Microstructures
2.2.4. Hardness
2.2.5. Dilatometry
3. Results and Discussion
3.1. Characterization of a Benchmark—PROTAC 500® Low-Alloyed Steel
3.2. Impact of the Homogenization and Normalization of the As-Received Sample on the Re-Solubilization of the Carbides Using an Induction Furnace (VIM)
3.3. Impact of the Atmosphere on the Chemical Composition Through Melting/Casting Cycles Using an Induction Furnace (VIM)
3.4. Impact of the Heat Treatment on the Physical and Mechanical Properties of the Casted Steels
3.4.1. Heat Treatment of Homogenization
3.4.2. Heat Treatment of Normalization
3.5. The Importance of Controlled Atmospheres for Scrap Recycling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tandon, V.; Thombre, M.A.; Patil, A.P.; Taiwade, R.V.; Vashishtha, H. Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel. Metallogr. Microstruct. Anal. 2020, 9, 668–677. [Google Scholar] [CrossRef]
- El-Bagoury, N.; Moussa, M.E.; Ibrahim, K.; Ghayad, I.; Halfa, H. Influence of Cr and Solution Treatment on Structure and Properties of New Class Lightweight Fe–Mn–Al–C Stainless Steels. Metallogr. Microstruct. Anal. 2022, 11, 38–58. [Google Scholar] [CrossRef]
- Pacheco, J.T.; de Oliveira, A.S.C.M. Additive Manufacturing of Duplex Stainless Steels: Assessment of Deposition Processes, Microstructure, and Properties. Int. J. Adv. Manuf. Technol. 2023, 127, 5013–5030. [Google Scholar] [CrossRef]
- Qiao, Y.-X.; Zheng, Z.-B.; Yang, H.-K.; Long, J.; Han, P.-X. Recent Progress in Microstructural Evolution, Mechanical and Corrosion Properties of Medium-Mn Steel. J. Iron Steel Res. Int. 2023, 30, 1463–1476. [Google Scholar] [CrossRef]
- Nasiri, Z.; Ghaemifar, S.; Naghizadeh, M.; Mirzadeh, H. Thermal Mechanisms of Grain Refinement in Steels: A Review. Met. Mater. Int. 2021, 27, 2078–2094. [Google Scholar] [CrossRef]
- Jorge, J.C.F.; Souza, L.F.G.D.; Mendes, M.C.; Bott, I.S.; Araújo, L.S.; Santos, V.R.D.; Rebello, J.M.A.; Evans, G.M. Microstructure Characterization and its Relationship with Impact Toughness of C-Mn and High Strength Low Alloy Steel Weld Metals—A Review. J. Mater. Res. Technol. 2021, 10, 471–501. [Google Scholar] [CrossRef]
- Cheng, H.; Luo, X.; Wu, X. Recent Research Progress on Additive Manufacturing of High-Strength Low-Alloy Steels: Focusing on the Processing Parameters, Microstructures and Properties. Mater. Today Commun. 2023, 36, 106616. [Google Scholar] [CrossRef]
- Yin, R.-Y. Review on the Study of Metallurgical Process Engineering. Int. J. Miner. Metall. Mater. 2021, 28, 1253–1263. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, Y. Development and Prospects of Molten Steel Deoxidation in Steelmaking Process. Int. J. Miner. Metall. Mater. 2024, 31, 18–32. [Google Scholar] [CrossRef]
- Xin, Z.; Zhang, J.; Peng, K.; Zhang, J.; Zhang, C.; Liu, Q. Modeling of LF Refining Process: A Review. J. Iron Steel Res. Int. 2024, 31, 289–317. [Google Scholar] [CrossRef]
- Nian, Y.; Zhang, L.; Zhang, C.; Ali, N.; Chu, J.; Li, J.; Liu, X. Application Status and Development Trend of Continuous Casting Reduction Technology: A Review. Processes 2022, 10, 2669. [Google Scholar] [CrossRef]
- Prifti, J.; Castro, M.; Squillacioti, R.; Cellitti, R. Improved Rolled Homogeneous Armor (IRHA) Steel Through Higher Hardness; United States Army Research Laboratory: Adelphi, MD, USA, 1997. Available online: https://apps.dtic.mil/sti/citations/ADA329222 (accessed on 21 July 2024).
- Jena, P.K.; Mishra, B.; RameshBabu, M.; Babu, A.; Singh, A.K.; SivaKumar, K.; Bhat, T.B. Effect of Heat Treatment on Mechanical and Ballistic Properties of a High Strength Armour Steel. Int. J. Impact Eng. 2010, 37, 242–249. [Google Scholar] [CrossRef]
- El-Bitar, T.; El-Shenawy, E.; El-Meligy, M.; Almosilhy, A.; Dawood, N. Development of Armor High Strength Steel (HSS) Mar-tensitic Plates for Troops Carriers. Mater. Sci. Forum 2016, 879, 489–494. [Google Scholar] [CrossRef]
- Paristiawan, P.A.; Adjiantoro, B. Effect of Hardening and Tempering on Mechanical Properties and Microstructures of Armoured Laterite Steel in Various Quench Media. AIP Conf. Proc. 2021, 2382, 070002. [Google Scholar] [CrossRef]
- Haiko, O.; Kaijalainen, A.; Pallaspuro, S.; Hannula, J.; Porter, D.; Liimatainen, T.; Kömi, J. The Effect of Tempering on the Mi-crostructure and Mechanical Properties of a Novel 0.4C Press-Hardening Steel. Appl. Sci. 2019, 9, 4231. [Google Scholar] [CrossRef]
- Alibeyki, M.; Mirzadeh, H.; Najafi, M. Fine-Grained Dual Phase Steel via Intercritical Annealing of Cold-Rolled Martensite. Vacuum 2018, 155, 147–152. [Google Scholar] [CrossRef]
- Das, D.; Chattopadhyay, P.P. Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Fer-rite-Martensite Dual-Phase Steel. J. Mater. Sci. 2009, 44, 2957–2965. [Google Scholar] [CrossRef]
- Soleimani, M.; Mirzadeh, H.; Dehghanian, C. Processing Route Effects on the Mechanical and Corrosion Properties of Dual Phase Steel. Met. Mater. Int. 2020, 26, 882–890. [Google Scholar] [CrossRef]
- Balbi, M.; Alvarez-Armas, I.; Armas, A. Effect of Holding Time at an Intercritical Temperature on the Microstructure and Tensile Properties of a Ferrite-Martensite Dual Phase Steel. Mater. Sci. Eng. A 2018, 733, 1–8. [Google Scholar] [CrossRef]
- Bupesh Raja, V.K.; Palanikumar, K.; Rohith Renish, R.; Ganesh Babu, A.N.; Varma, J.; Gopal, P. Corrosion Resistance of Corten Steel—A Review. Mater. Today Proc. 2021, 46, 3572–3577. [Google Scholar] [CrossRef]
- Mejía Gómez, J.A.; Antonissen, J.; Palacio, C.A.; De Grave, E. Effects of Si as Alloying Element on Corrosion Resistance of Weathering Steel. Corros. Sci. 2012, 59, 198–203. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Q.; Zhao, L.; Zhang, C.; Gu, M.; Wang, Q.; Wang, G. Insight into the Role of Si on Corrosion Resistance of Weathering Steel in a Simulated Industrial Atmosphere. J. Mater. Res. Technol. 2023, 26, 487–503. [Google Scholar] [CrossRef]
- Cano, H.; Díaz, I.; de la Fuente, D.; Chico, B.; Morcillo, M. Effect of Cu, Cr and Ni Alloying Elements on Mechanical Properties and Atmospheric Corrosion Resistance of Weathering Steels in Marine Atmospheres of Different Aggressivities. Mater. Corros. 2018, 69, 8–19. [Google Scholar] [CrossRef]
- Farrugia, D.; Brown, S.; Lavery, N.P.; Pleydell-Pearce, C.; Davis, C. Rapid Alloy Prototyping for a Range of Strip Related Advanced Steel Grades. Procedia Manuf. 2020, 50, 784–790. [Google Scholar] [CrossRef]
- Schrama, F.N.H.; Beunder, E.M.; Van den Berg, B.; Yang, Y.; Boom, R. Sulphur Removal in Ironmaking and Oxygen Steelmaking. Ironmak. Steelmak. 2017, 44, 333–343. [Google Scholar] [CrossRef]
- Alves, P.C.; da Rocha, V.C.; Pereira, J.A.M.; Bielefeldt, W.V.; Vilela, A.C.F. Review and Planning of Experiments with Steel and Slag in Laboratory Furnace. J. Mater. Res. Technol. 2018, 7, 387–394. [Google Scholar] [CrossRef]
- Kukartsev, V.A.; Kukartsev, V.V.; Tynchenko, V.S. Cast Iron and Steel Smelting in Induction Crucible Furnaces of Industrial Frequency. Solid State Phenom. 2020, 299, 530–534. [Google Scholar] [CrossRef]
- Gertsyk, S.I.; Mineev, Y.A. Technology of Melting of a 12Kh18N10T Alloy in Induction Furnaces. Russ. Metall. 2021, 2021, 1645–1649. [Google Scholar] [CrossRef]
- Serov, G.V.; Komissarov, A.A.; Tikhonov, S.M.; Sidorova, E.P.; Kushnerev, V.; Mishnev, P.A.; Kuznetsov, D.V. Effect of Deoxidation on Low-Alloy Steel Nonmetallic Inclusion Composition. Refract. Ind. Ceram. 2019, 59, 573–578. [Google Scholar] [CrossRef]
- Osei, R.; Lekakh, S.; O’Malley, R. Effect of Cu Additions on Scale Structure and Descaling Efficiency of Low C Steel Reheated in a Combustion Gas Atmosphere. Oxid. Met. 2022, 98, 363–383. [Google Scholar] [CrossRef]
- Cabrilo, A.; Geric, K. Weldability of High Hardness Armor Steel. Adv. Mater. Res. 2016, 1138, 79–84. [Google Scholar] [CrossRef]
- Savic, B.; Cabrilo, A. Effect of Heat Input on the Ballistic Performance of Armor Steel Weldments. Materials 2021, 14, 3617. [Google Scholar] [CrossRef] [PubMed]
- Sabzi, M.; Farzam, M. Hadfield Manganese Austenitic Steel: A Review of Manufacturing Processes and Properties. Mater. Res. Express 2019, 6, 1065c2. [Google Scholar] [CrossRef]
- Mahlami, C.S.; Pan, X. An Overview on High Manganese Steel Casting. In Proceedings of the 71st World Foundry Congress: Advanced Sustainable Foundry, Bilbao, Spain, 19–21 May 2014. [Google Scholar]
- Yang, D.; Xiong, Z.; Zhang, C.; Feng, G.; Cheng, Z.; Cheng, X. Evolution of Microstructures and Mechanical Properties with Tempering Temperature of a Pearlitic Quenched and Tempered Steel. J. Iron Steel Res. Int. 2022, 29, 1393–1403. [Google Scholar] [CrossRef]
- Ludlow, V.; Normanton, A.; Anderson, A.; Thiele, M.; Ciriza, J.; Laraudogoitia, J.; van der Knoop, W. Strategy to Minimise Central Segregation in High Carbon Steel Grades during Billet Casting. Ironmak. Steelmak. 2005, 32, 68–74. [Google Scholar] [CrossRef]
- Guo, F.; Wang, X.; Wang, J.; Misra, R.D.K.; Shang, C. The Significance of Central Segregation of Continuously Cast Billet on Banded Microstructure and Mechanical Properties of Section Steel. Metals 2020, 10, 76. [Google Scholar] [CrossRef]
- Zhang, M.; Bao, Y.; Zhao, L.; Li, X. Improvement of Carbon Segregation in Cast Bloom and Heredity in Hot-Rolled Bar. Metall. Res. Technol. 2021, 118, 610. [Google Scholar] [CrossRef]
- Choudhary, S.K.; Ganguly, S. Morphology and Segregation in Continuously Cast High Carbon Steel Billets. ISIJ Int. 2007, 47, 1759–1766. [Google Scholar] [CrossRef]
- Trzaska, J. Calculation of Critical Temperatures by Empirical Formulae. Arch. Metall. Mater. 2016, 61, 981–986. [Google Scholar] [CrossRef]
- Epifano, E.; Monceau, D. Ellingham Diagram: A New Look at an Old Tool. Corros. Sci. 2023, 217, 111113. [Google Scholar] [CrossRef]
- Pioro, L.S.; Pioro, I.L. Reprocessing of Metallurgical Slag into Materials for the Building Industry. Waste Manag. 2004, 24, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Gu, G.; Kwon, M.-H.; Koo, M.; Kim, E.-Y.; Kim, J.-K.; Lee, J.S.; Suh, D.-W. Microstructure and Tensile Properties of Chemically Heterogeneous Steel Consisting of Martensite and Austenite. Acta Mater. 2022, 223, 117506. [Google Scholar] [CrossRef]
- Wang, W.; Wei, P.; Liu, H.; Zhu, C.; Deng, G.; Liu, H. A Micromechanics-Based Machine Learning Model for Evaluating the Microstructure-Dependent Rolling Contact Fatigue Performance of a Martensitic Steel. Int. J. Mech. Sci. 2023, 237, 107784. [Google Scholar] [CrossRef]
- Sun, C.; Fu, P.-X.; Ma, X.-P.; Liu, H.-H.; Du, N.-Y.; Cao, Y.-F.; Liu, H.-W.; Li, D.-Z. Effect of Matrix Carbon Content and Lath Martensite Microstructures on the Tempered Precipitates and Impact Toughness of a Medium-Carbon Low-Alloy Steel. J. Mater. Res. Technol. 2020, 9, 7701–7710. [Google Scholar] [CrossRef]
- Badkoobeh, F.; Mostaan, H.; Rafiei, M.; Bakhsheshi-Rad, H.R.; Berto, F. Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review. Metals 2022, 12, 101. [Google Scholar] [CrossRef]
- Hofinger, M.; Staudacher, M.; Ognianov, M.; Turk, C.; Leitner, H.; Schnitzer, R. Microstructural Evolution of a Dual Hardening Steel during Heat Treatment. Micron 2019, 120, 48–56. [Google Scholar] [CrossRef]
- Ravi, A.M.; Kumar, A.; Herbig, M.; Sietsma, J.; Santofimia, M.J. Impact of Austenite Grain Boundaries and Ferrite Nucleation on Bainite Formation in Steels. Acta Mater. 2020, 188, 424–434. [Google Scholar] [CrossRef]
- Zhang, S.; Romo, S.; Giorjao, R.A.; Leao, P.B.P.; Ramirez, A.J. EBSD Analysis of Strain Distribution and Evolution in Ferritic-Pearlitic Steel under Cyclic Deformation at Intermediate Temperature. Mater. Charact. 2022, 193, 112293. [Google Scholar] [CrossRef]
- Rohit Sai Krishna, A.; Vamshi Krishna, B.; Sashank, T.; Harshith, D.; Subbiah, R. Influence and Assessment of Mechanical Properties on Treated P91 Steel with Normalizing Processes. Mater. Today Proc. 2020, 27, 1555–1558. [Google Scholar] [CrossRef]
Material | Composition (wt.%) | HB | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | Mo | Cu | Fe | |||
Low-alloyed steel—certificate values | 0.403 | 0.416 | 0.295 | 0.187 | 1.502 | 0.184 | 0.360 | Balance | NA | Supplier * |
Standard low-alloyed steel—measurements | 0.419 | 0.417 | 0.299 | 0.192 | 1.471 | 0.179 | 0.352 | NA | This work | |
PROTAC 500®—surface | 0.149 | 0.534 | 0.971 | 0.464 | 1.033 | 0.370 | 0.154 | 495 | This work | |
PROTAC 500®—bulk | 0.302 | 0.525 | 0.940 | 0.459 | 1.007 | 0.357 | 0.155 | 420 | This work | |
PROTAC 500® (Literature) | 0.270 | 0.710 | 1.070 | 0.640 | 1.090 | 0.300 | 0.154 | 464 | [32,33] | |
PROTAC 500® (supplier, max in wt.%) | 0.300 | 0.800 | 1.300 | −0.800 | 1.500 | 0.500 | - | 480–530 | Commercial datasheet |
Material | Composition (wt.%) | HB | |||||||
---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | Mo | Cu | Fe | ||
Before homogenization | 0.149 | 0.534 | 0.971 | 0.464 | 1.033 | 0.370 | 0.154 | Bal. | 464 |
After homogenization | 0.256 | 0.540 | 1.170 | 0.467 | 1.097 | 0.377 | 0.159 | Bal. | 215 |
Condition | Vacuum | Argon | Air | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Casting n° | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 |
m initial (g) | 559.0 | 538.4 | 537.0 | 523.5 | 512.7 | 427.8 | 411.9 | 403.1 | 388.9 | 361.7 | 454.9 | No melting after 3 h in the VIM | |
m final (g) | 557.5 | 537.9 | 534.4 | 523.4 | 502.5 | 425.8 | 409.1 | 401.5 | 371.1 | 360.3 | 439.8 | ||
Loss (%) | 0.27 | 0.09 | 0.48 | 0.02 | 2.0 | 0.47 | 0.68 | 0.40 | 4.6 | 0.39 | 3.3 |
Condition | Cast n° | Composition (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | Mo | Cu | Nb | P | Bal. Fe | Other | ||
As-received | 0.143 | 0.535 | 0.982 | 0.465 | 1.035 | 0.371 | 0.154 | 0.019 | 0.005 | 96.088 | 0.203 | |
Vacuum | 1 | 0.208 | 0.518 | 1.052 | 0.467 | 1.114 | 0.403 | 0.155 | 0.022 | 0.007 | 95.692 | 1.362 |
2 | 0.262 | 0.558 | 0.818 | 0.455 | 1.137 | 0.371 | 0.137 | 0.017 | 0.012 | 96.050 | 0.183 | |
3 | 0.252 | 0.486 | 1.025 | 0.458 | 1.093 | 0.377 | 0.152 | 0.016 | 0.007 | 95.853 | 0.281 | |
4 | 0.257 | 0.441 | 1.005 | 0.463 | 1.099 | 0.391 | 0.148 | 0.020 | 0.007 | 95.787 | 0.382 | |
5 | 0.249 | 0.436 | 1.127 | 0.471 | 1.148 | 0.397 | 0.150 | 0.019 | 0.008 | 95.837 | 0.158 | |
As-received | 0.143 | 0.535 | 0.982 | 0.465 | 1.035 | 0.371 | 0.154 | 0.019 | 0.005 | 96.088 | 0.203 | |
Argon | 1 | 0.181 | 0.505 | 0.961 | 0.470 | 1.070 | 0.373 | 0.161 | 0.019 | 0.007 | 96.111 | 0.142 |
2 | 0.254 | 0.489 | 1.041 | 0.471 | 1.041 | 0.372 | 0.158 | 0.020 | 0.007 | 95.948 | 0.199 | |
3 | 0.234 | 0.476 | 1.051 | 0.463 | 1.051 | 0.362 | 0.156 | 0.017 | 0.006 | 96.115 | 0.205 | |
4 | 0.219 | 0.442 | 0.886 | 0.459 | 1.039 | 0.355 | 0.151 | 0.015 | 0.006 | 96.283 | 0.145 | |
5 | 0.230 | 0.426 | 0.908 | 0.468 | 1.062 | 0.375 | 0.150 | 0.018 | 0.007 | 96.215 | 0.141 | |
As-received | 0.143 | 0.535 | 0.982 | 0.465 | 1.035 | 0.371 | 0.154 | 0.019 | 0.005 | 96.088 | 0.203 | |
Air | 1 | 0.227 | 0.159 | 0.247 | 0.362 | 1.063 | 0.374 | 0.160 | 0.007 | 0.006 | 97.259 | 0.598 |
2 | No melting after 3 h in the VIM | |||||||||||
3 |
Condition | Weight Change (%) | |||||||
---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | Mo | Cu | Bal. Fe | |
Vacuum | +1.98 | −9.26 | −1.95 | +1.09 | +0.55 | +3.71 | −2.63 | −0.07 |
Argon | −6.41 | −7.14 | −15.7 | −0.86 | −1.14 | −1.93 | −3.21 | +0.17 |
Air | +58.7 | −70.3 | −74.9 | −22.2 | −2.71 | +0.81 | +3.90 | +1.22 |
Sample | Furnace (Atmosphere) | Condition | Composition (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | Mo | Cu | Nb | P | |||
Vacuum Cast n° 5 | Regular muffle (air) | Before Hom. | 0.249 | 0.436 | 1.127 | 0.471 | 1.148 | 0.397 | 0.150 | 0.019 | 0.008 |
After Hom. | 0.221 | 0.524 | 0.925 | 0.461 | 1.029 | 0.355 | 0.158 | 0.017 | 0.007 | ||
Normalization | 0.223 | 0.512 | 0.934 | 0.464 | 1.005 | 0.357 | 0.151 | 0.019 | 0.007 | ||
VIM (vacuum) | Before Hom. | 0.249 | 0.436 | 1.127 | 0.471 | 1.148 | 0.397 | 0.150 | 0.019 | 0.008 | |
After Hom. | 0.228 | 0.518 | 1.008 | 0.457 | 1.116 | 0.378 | 0.155 | 0.018 | 0.008 | ||
Normalization | 0.222 | 0.498 | 1.043 | 0.455 | 1.132 | 0.381 | 0.152 | 0.018 | 0.009 | ||
Argon Cast n° 5 | Regular muffle (air) | Before Hom | 0.230 | 0.426 | 0.908 | 0.468 | 1.062 | 0.375 | 0.150 | 0.018 | 0.007 |
After Hom. | 0.224 | 0.497 | 0.915 | 0.459 | 1.046 | 0.369 | 0.154 | 0.015 | 0.007 | ||
Normalization | 0.226 | 0.479 | 0.909 | 0.465 | 1.042 | 0.371 | 0.150 | 0.016 | 0.007 | ||
Air Cast n° 1 | Regular muffle (air) | Before Hom | 0.227 | 0.159 | 0.247 | 0.362 | 1.063 | 0.374 | 0.160 | 0.007 | 0.006 |
After Hom. | 0.216 | 0.171 | 0.256 | 0.355 | 1.072 | 0.371 | 0.165 | 0.006 | 0.007 | ||
Normalization | 0.223 | 0.165 | 0.255 | 0.357 | 1.069 | 0.371 | 0.163 | 0.007 | 0.007 |
Sample | Furnace Used During the Normalization (Atmosphere) | Cooling Rate | Microstructure | Hardness (HB) |
---|---|---|---|---|
Vacuum cast n° 5 Homogenized (vacuum) | Induction (vacuum) | FQ | F + B | 240 |
Vacuum cast n° 5 Homogenized (air) | Regular muffle (air) | FQ | F + P | 203 |
Regular muffle (air) | AQ | F + P | 208 | |
Regular muffle (air) | WQ | B + M | 467 | |
Argon cast n° 5 Homogenized (air) | Regular muffle (air)) | FQ | F + P | 199 |
Regular muffle (air) | AQ | F + B | 223 | |
Regular muffle (air) | WQ | B + M | 445 | |
Air cast n° 1 Homogenized (air) | Regular muffle (air) | FQ | F | 160 |
Regular muffle (air) | AQ | F | 163 | |
Regular muffle (air) | WQ | F + B | 229 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ah-lung, G.; Barchid, A.; Boubeker, B.; Samih, Y.; Alami, J.; Senhaji, S.B.; Jacquemin, J. Effects of Melting/Casting and Thermal Treatment Surrounding Gas Phase Composition on the Properties of a Low-Alloyed Steel. Metals 2024, 14, 1317. https://doi.org/10.3390/met14121317
Ah-lung G, Barchid A, Boubeker B, Samih Y, Alami J, Senhaji SB, Jacquemin J. Effects of Melting/Casting and Thermal Treatment Surrounding Gas Phase Composition on the Properties of a Low-Alloyed Steel. Metals. 2024; 14(12):1317. https://doi.org/10.3390/met14121317
Chicago/Turabian StyleAh-lung, Guillaume, Ayyoube Barchid, Brahim Boubeker, Youssef Samih, Jones Alami, Sanae Baki Senhaji, and Johan Jacquemin. 2024. "Effects of Melting/Casting and Thermal Treatment Surrounding Gas Phase Composition on the Properties of a Low-Alloyed Steel" Metals 14, no. 12: 1317. https://doi.org/10.3390/met14121317
APA StyleAh-lung, G., Barchid, A., Boubeker, B., Samih, Y., Alami, J., Senhaji, S. B., & Jacquemin, J. (2024). Effects of Melting/Casting and Thermal Treatment Surrounding Gas Phase Composition on the Properties of a Low-Alloyed Steel. Metals, 14(12), 1317. https://doi.org/10.3390/met14121317