Laser Powder Bed Fusion of Pure Titanium: Optimization of Processing Parameters by Means of Efficient Volumetric Energy Density Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cp Titanium Powder Characterization
2.2. L-PBF Process
2.3. Microstructural Characterization
3. Results and Discussion
3.1. Characterization of Cp Titanium Powder
3.2. Volumetric Energy Density (VED) and Efficient VED (VEDeff) Calculation
3.3. Thermodynamical Work Window Assessment
3.4. Optimization of the Processing Parameters by Using VED, VEDeff and Thermodynamical Work Window
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ladani, L.; Sadeghilaridjani, M. Review of Powder Bed Fusion Additive Manufacturing for Metals. Metals 2021, 11, 1391. [Google Scholar] [CrossRef]
- Dejene, N.D.; Lemu, H.G. Current Status and Challenges of Powder Bed Fusion-Based Metal Additive Manufacturing: Liter-ature Review. Metals 2023, 13, 424. [Google Scholar] [CrossRef]
- Sarzyński, B.; Śnieżek, L.; Grzelak, K. Metal Additive Manufacturing (MAM) Applications in Production of Vehicle Parts and Components—A Review. Metals 2024, 14, 195. [Google Scholar] [CrossRef]
- Shanthar, R.; Chen, K.; Abeykoon, C. Powder-Based Additive Manufacturing: A Critical Review of Materials, Methods, Op-portunities, and Challenges. Adv. Eng. Mater. 2023, 25, 2300375. [Google Scholar] [CrossRef]
- Yao, L.; Ramesh, A.; Xiao, Z.; Chen, Y.; Zhuang, Q. Multimetal Research in Powder Bed Fusion: A Review. Materials 2023, 16, 4287. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liang, X.; Wang, J.; Zhang, H.; Wang, X.; Liu, Z. Microstructure tailoring in laser powder bed fusion (L-PBF): Strategies, challenges, and future outlooks. J. Alloys Compd. 2024, 970, 172564. [Google Scholar] [CrossRef]
- Zong, H.; Kang, N.; Qin, Z.; El Mansori, M. A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing. Int. J. Miner. Met. Mater. 2024, 31, 1048–1071. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, Y.; Wang, X.; Li, X.; He, Y.; Li, F.; Lu, Y.; Su, H. High throughput in-situ synthesis of Fe-Cr-Ni alloys via laser powder bed fusion: Exploring the microstructure and property evolution. Addit. Manuf. 2024, 81, 103996. [Google Scholar] [CrossRef]
- Li, K.; Yang, T.; Gong, N.; Wu, J.; Wu, X.; Zhang, D.Z.; Murr, L.E. Additive manufacturing of ultra-high strength steels: A review. J. Alloys Compd. 2023, 965, 171390. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Li, A.; Yi, D.; Li, T. A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications. Materials 2024, 17, 2553. [Google Scholar] [CrossRef] [PubMed]
- Manjhi, S.K.; Sekar, P.; Bontha, S.; Balan, A.S.S. Additive manufacturing of magnesium alloys: Characterization and post-processing. Int. J. Light. Mater. Manuf. 2024, 7, 184–213. [Google Scholar] [CrossRef]
- Peng, B.; Xu, H.; Song, F.; Wen, P.; Tian, Y.; Zheng, Y. Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification. J. Mater. Sci. Technol. 2024, 182, 79–110. [Google Scholar] [CrossRef]
- Adomako, N.K.; Haghdadi, N.; Primig, S. Electron and laser-based additive manufacturing of Ni-based superalloys: A review of heterogeneities in microstructure and mechanical properties. Mater. Des. 2022, 223, 111245. [Google Scholar] [CrossRef]
- Volpato, G.M.; Tetzlaff, U.; Fredel, M.C. A Comprehensive Literature Review on Laser Powder Bed Fusion of Inconel Super-alloys. Addit. Manuf. 2022, 55, 102871. [Google Scholar]
- Villa, R.; Liu, Y.; Siddique, Z. Review of defects and their sources in as-built Ti6Al4V manufactured via powder bed fusion. Int. J. Adv. Manuf. Technol. 2024, 132, 4105–4134. [Google Scholar] [CrossRef]
- Luo, X.; Yang, C.; Li, D.; Zhang, L.C. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review. Acta Metall. Sin. (Engl. Lett.) 2024, 37, 17–28. [Google Scholar] [CrossRef]
- Karimi, P.; Keshavarz, M.K.; Sadeghi, E.; Habibnejad, M.; Vlasea, M. Interplay of process, microstructure, and mechanical performance in electron beam-powder bed fusion of Ti48Al2Nb2Cr. Addit. Manuf. 2023, 77, 103811. [Google Scholar] [CrossRef]
- Tyagi, S.A.; Manjaiah, M. Additive manufacturing of titanium-based lattice structures for medical applications—A review. Bioprinting 2023, 30, e00267. [Google Scholar] [CrossRef]
- Depboylu, F.N.; Yasa, E.; Poyraz, Ö.; Minguella-Canela, J.; Korkusuz, F.; De los Santos López, M.A. Titanium based bone implants production using laser powder bed fusion technology. J. Mater. Res. Technol. 2022, 17, 1408–1426. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Gasik, M.; Silva, F.S.; Miranda, G. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 2022, 12, 986. [Google Scholar] [CrossRef]
- Tang, X.; Chen, X.; Sun, F.; Liu, P.; Zhou, H.; Fu, S. The current state of CuCrZr and CuCrNb alloys manufactured by additive manufacturing: A review. Mater. Des. 2022, 224, 111419. [Google Scholar] [CrossRef]
- Howard, L.; Parker, G.D.; Yu, X.Y. Progress and Challenges of Additive Manufacturing of Tungsten and Alloys as Plas-ma-Facing Materials. Materials 2024, 17, 2104. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhu, J.; Lu, B.; Liu, Y.; Shi, W.; Liu, M.; Wang, G.; Yan, X. Powder bed fusion pure tantalum and tantalum alloys: From original materials, process, performance to applications. Opt. Laser Technol. 2024, 177, 111057. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, C.; Li, Y. Additive Manufacturing of Rare Earth Permanent Magnetic Materials: Research Status and Prospects. Metals 2024, 14, 446. [Google Scholar] [CrossRef]
- Abedi, M.; Moskovskikh, D.; Romanovski, V.; Ozherelkov, D.; Gromov, A. Unlocking the potential of graphene-reinforced AlSi10Mg nanocomposites in laser powder bed fusion: A comprehensive review. J. Alloys Compd. 2024, 978, 173441. [Google Scholar] [CrossRef]
- Kim, M.K.; Fang, Y.; Kim, J.; Kim, T.; Zhang, Y.; Jeong, W.; Suhr, J. Strategies and Outlook on Metal Matrix Composites Pro-duced Using Laser Powder Bed Fusion: A Review. Metals 2023, 13, 1658. [Google Scholar] [CrossRef]
- Essien, U.; Vaudreuil, S. Issues in Metal Matrix Composites Fabricated by Laser Powder Bed Fusion Technique: A Review. Adv. Eng. Mater. 2022, 24, 2200055. [Google Scholar] [CrossRef]
- Yang, G.; Xie, Y.; Zhao, S.; Qin, L.; Wang, X.; Wu, B. Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-powder-melt Pool Interaction: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, Y. A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing. Addit. Manuf. 2018, 21, 318–332. [Google Scholar] [CrossRef]
- Shen, T.; Li, B. An integrated computation framework for predicting mechanical performance of single-phase alloys manufactured using laser powder bed fusion: A case study of CoCrFeMnNi high-entropy alloy. Mater. Today Commun. 2024, 39, 109180. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Moghaddam, N.S. Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges. J. Manuf. Process. 2022, 73, 961–984. [Google Scholar] [CrossRef]
- Phadke, N.; Raj, R.; Srivastava, A.K.; Dwivedi, S.; Dixit, A.R. Modeling and parametric optimization of laser powder bed fusion 3D printing technique using artificial neural network for enhancing dimensional accuracy. Mater. Today Proc. 2022, 56, 873–878. [Google Scholar] [CrossRef]
- Babakan, A.M.; Davoodi, M.; Shafaie, M.; Sarparast, M.; Zhang, H. Predictive modeling of porosity in AlSi10Mg alloy fabricated by laser powder bed fusion: A comparative study with RSM, ANN, FL, and ANFIS. Int. J. Adv. Manuf. Technol. 2023, 129, 1097–1108. [Google Scholar] [CrossRef]
- Noh, J.; Lee, J.; Seo, Y.; Hong, S.; Kwon, Y.-S.; Kim, D. Dimensionless parameters to define process windows of selective laser melting process to fabricate three-dimensional metal structures. Opt. Laser Technol. 2022, 149, 107880. [Google Scholar] [CrossRef]
- Islam, Z.; Kunkel, W.; Hatler, C.; Thoma, D.J. Process optimization and scaling of molybdenum and tungsten in additive manufacturing techniques. Int. J. Refract. Met. Hard Mater. 2024, 121, 106689. [Google Scholar] [CrossRef]
- Rankouhi, B.; Agrawal, A.K.; Pfefferkorn, F.E.; Thoma, D.J. A dimensionless number for predicting universal processing parameter boundaries in metal powder bed additive manufacturing. Manuf. Lett. 2021, 27, 13–17. [Google Scholar] [CrossRef]
- Ferro, P.; Meneghello, R.; Savio, G.; Berto, F. A modified volumetric energy density–based approach for porosity assessment in additive manufacturing process design. Int. J. Adv. Manuf. Technol. 2020, 110, 1911–1921. [Google Scholar] [CrossRef]
- Fischer, R.D.; Harvill, G.C.; Zhao, R.; Talebinezhad, H.; Prorok, B.C. A roadmap for tailoring the microstructure and mechanical properties of additively manufactured commercially-pure titanium. Mater. Sci. Eng. A 2024, 892, 146088. [Google Scholar] [CrossRef]
- Depboylu, F.N.; Yasa, E.; Poyraz, O.; Korkusuz, F. Thin-Walled Commercially Pure Titanium Structures: Laser Powder Bed Fusion Process Parameter Optimization. Machines 2023, 11, 272. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Bayat, M.; Tan, Q.; Yin, Y.; Fan, Z.; Liu, S.; Hattel, J.H.; Dargusch, M.; Zhang, M.-X. Achieving high ductility in a selectively laser melted commercial pure-titanium via in-situ grain refinement. Scr. Mater. 2021, 191, 155–160. [Google Scholar] [CrossRef]
- Kovacı, H. Comparison of the microstructural, mechanical and wear properties of plasma oxidized Cp-Ti prepared by laser powder bed fusion additive manufacturing and forging processes. Surf. Coat. Technol. 2019, 374, 987–996. [Google Scholar] [CrossRef]
- Traxel, K.D.; Bandyopadhyay, A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing. Addit. Manuf. 2020, 31, 101004. [Google Scholar] [CrossRef] [PubMed]
- Umeda, J.; Jia, L.; Chen, B.; Chen, K.; Li, S.; Shitara, K.; Kondoh, K. Precipitation and Distribution Behavior of In Situ-Formed TiB Whiskers in Ti64 Composites Fabricated by Selective Laser Melting. Crystals 2021, 11, 374. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, Z.H.; Wang, Y.P.; Liu, G.; Zhou, S.Y.; Li, Y.L.; Shen, J.; Yan, M. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis. Addit. Manuf. 2019, 25, 204–217. [Google Scholar] [CrossRef]
- ASTM B213-20; Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM B311-17; Standard Test Method for Density of Powder Metallurgy (PM) Materials Containing Less Than Two Percent Porosity. ASTM International: New York, NY, USA, 2019.
- ISO 6507-1:2023; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization: Ginerva, Switzerland, 2023.
- Antony, K.; Rakeshnath, T.R. Study on selective laser melting of commercially pure titanium powder. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2019, 233, 1794–1807. [Google Scholar] [CrossRef]
- Brandau, B.; Da Silva, A.; Wilsnack, C.; Brueckner, F.; Kaplan, A.F.H. Absorbance study of powder conditions for laser additive manufacturing. Mater. Des. 2022, 216, 110591. [Google Scholar] [CrossRef]
- Cook, P.S.; Ritchie, D.J. Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation. Opt. Laser Technol. 2023, 162, 109247. [Google Scholar] [CrossRef]
- Slezak, T.; Zmywaczyk, J.; Koniorczyk, P. Thermal Diffusivity Investigations of the Titanium Grade 1 in Wide Tem-perature Range. In AIP Conference Proceedings, Proceedings of the THERMOPHYSICS 2019: 24th International Meeting of Thermophysics and 20th Conference REFRA, Trnava, Slovakia, 22–24 October 2019; American Institute of Physics Inc.: Melville, NY, USA, 2019; Volume 2170. [Google Scholar]
- Zhou, K.; Wang, H.P.; Chang, J.; Wei, B. Experimental study of surface tension, specific heat and thermal diffusivity of liquid and solid titanium. Chem. Phys. Lett. 2015, 639, 105–108. [Google Scholar] [CrossRef]
- Akwaboa, S.; Zeng, C.; Amoafo-Yeboah, N.; Ibekwe, S.; Mensah, P. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters. Materials 2023, 16, 4920. [Google Scholar] [CrossRef] [PubMed]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables, 4th ed.; American Institute of Physics: College Park, MD, USA, 1998; Volume 9, pp. 1–1951. [Google Scholar]
- Fischer, P.; Leber, H.; Romano, V.; Weber, H.P.; Karapatis, N.P.; André, C.; Glardon, R. Microstructure of near-infrared pulsed laser sintered titanium samples. Appl. Phys. A Mater. Sci. Process. 2004, 78, 1219–1227. [Google Scholar] [CrossRef]
- Ghio, E.; Cerri, E. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. Materials 2022, 15, 2047. [Google Scholar] [CrossRef]
- Wysocki, B.; Maj, P.; Krawczyńska, A.; Rożniatowski, K.; Zdunek, J.; Kurzydłowski, K.J.; Święszkowski, W. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM). J. Mater. Process. Technol. 2017, 241, 13–23. [Google Scholar] [CrossRef]
- Soares, S.; Rocha, D.; Adabo, G.L.; Elias, G.; Henriques, P.; Antônio, M.; Nóbilo, A. Vickers Hardness of Cast Commercially Pure Titanium and Ti-6Al-4V Alloy Submitted to Heat Treatments. Braz. Dent. J. 2006, 17, 126–129. [Google Scholar]
Element | N | C | H | Fe | O | Ti |
---|---|---|---|---|---|---|
Content (wt.%) | 0.011 | 0.01 | 0.002 | 0.059 | 0.18 | Balance |
Process Parameter | Value |
---|---|
Laser Powers P (W) | 90–100–110–120–130–140 |
Scanning Speeds v (mm/s) | 221 ÷ 1667 |
Hatching Distance h (µm) | 80 |
Layer Thickness (µm) | 30 |
Volumetric Energy Densities VED (J/mm3) | 35 ÷ 150 |
Efficient VED (J/mm3) | 11.19 ÷ 31.67 |
Flowability | |
---|---|
Apparent Density (ρapp) | 2.49 ± 0.01 g/cm3 |
Tap Density (ρtap) | 2.85 ± 0.01 g/cm3 |
Flowability (Hall test) | 41.6 ± 0.9 s |
Compressibility Index | 13 |
Hausner Ratio | 1.15 |
Sample | Laser Power (W) | Scanning Speeds (mm/s) | Porosity (%) | VED (J/mm3) | VED *eff (J/mm3) | VED **eff (J/mm3) |
---|---|---|---|---|---|---|
1 | 90 | 536 | 9.62 | 35 | 11.52 | 11.19 |
2 | 100 | 595 | 8.24 | 12.15 | 11.80 | |
3 | 110 | 655 | 8.96 | 12.73 | 12.36 | |
4 | 120 | 714 | 12.97 | 13.30 | 12.92 | |
5 | 130 | 774 | 12.82 | 13.84 | 13.44 | |
6 | 140 | 833 | 10.45 | 14.37 | 13.96 | |
7 | 90 | 750 | 5.56 | 50 | 13.77 | 13.38 |
8 | 100 | 833 | 7.26 | 14.52 | 14.10 | |
9 | 110 | 917 | 5.51 | 15.22 | 14.78 | |
10 | 120 | 1000 | 5.23 | 15.90 | 15.44 | |
11 | 130 | 1083 | 5.50 | 16.55 | 16.08 | |
12 | 140 | 1167 | 6.65 | 17.17 | 16.68 | |
13 | 90 | 536 | 7.47 | 70 | 16.29 | 15.82 |
14 | 100 | 595 | 6.03 | 17.18 | 16.68 | |
15 | 110 | 655 | 6.26 | 18.01 | 17.49 | |
16 | 120 | 714 | 6.61 | 18.82 | 18.28 | |
17 | 130 | 774 | 6.06 | 19.58 | 19.02 | |
18 | 140 | 833 | 5.34 | 20.32 | 19.74 | |
19 | 90 | 417 | 1.95 | 90 | 18.47 | 17.93 |
20 | 100 | 463 | 1.81 | 19.47 | 18.91 | |
21 | 110 | 509 | 1.63 | 20.43 | 19.84 | |
22 | 120 | 556 | 2.88 | 21.32 | 20.71 | |
23 | 130 | 602 | 1.83 | 22.20 | 21.56 | |
24 | 140 | 648 | 2.12 | 23.04 | 22.38 | |
25 | 90 | 341 | 1.77 | 110 | 20.42 | 19.84 |
26 | 100 | 379 | 1.67 | 21.52 | 20.91 | |
27 | 110 | 417 | 1.52 | 22.57 | 21.92 | |
28 | 120 | 455 | 1.88 | 23.57 | 22.90 | |
29 | 130 | 492 | 1.63 | 24.56 | 23.85 | |
30 | 140 | 530 | 1.80 | 25.48 | 24.75 | |
31 | 90 | 288 | 1.16 | 130 | 22.22 | 21.58 |
32 | 100 | 321 | 1.13 | 23.39 | 22.72 | |
33 | 110 | 353 | 1.29 | 24.53 | 23.83 | |
34 | 120 | 385 | 1.48 | 25.62 | 24.89 | |
35 | 130 | 417 | 0.98 | 26.67 | 25.91 | |
36 | 140 | 449 | 1.25 | 27.68 | 26.89 | |
37 | 90 | 221 | 1.11 | 150 | 25.37 | 24.64 |
38 | 100 | 245 | 1.12 | 26.77 | 26.00 | |
39 | 110 | 270 | 1.02 | 28.05 | 27.25 | |
40 | 120 | 294 | 1.26 | 29.32 | 28.48 | |
41 | 130 | 319 | 0.93 | 30.49 | 29.62 | |
42 | 140 | 343 | 1.03 | 31.67 | 30.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badini, C.F.; Santero, T.; Rosito, M.; Padovano, E. Laser Powder Bed Fusion of Pure Titanium: Optimization of Processing Parameters by Means of Efficient Volumetric Energy Density Approach. Metals 2024, 14, 1357. https://doi.org/10.3390/met14121357
Badini CF, Santero T, Rosito M, Padovano E. Laser Powder Bed Fusion of Pure Titanium: Optimization of Processing Parameters by Means of Efficient Volumetric Energy Density Approach. Metals. 2024; 14(12):1357. https://doi.org/10.3390/met14121357
Chicago/Turabian StyleBadini, Claudio F., Tommaso Santero, Michele Rosito, and Elisa Padovano. 2024. "Laser Powder Bed Fusion of Pure Titanium: Optimization of Processing Parameters by Means of Efficient Volumetric Energy Density Approach" Metals 14, no. 12: 1357. https://doi.org/10.3390/met14121357
APA StyleBadini, C. F., Santero, T., Rosito, M., & Padovano, E. (2024). Laser Powder Bed Fusion of Pure Titanium: Optimization of Processing Parameters by Means of Efficient Volumetric Energy Density Approach. Metals, 14(12), 1357. https://doi.org/10.3390/met14121357