The Manufacture and Investigation of 3D Current Collectors in a Lithium Ion Battery Obtained by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials and the PBF-LB/M Process Parameters
2.2. Geometry of the 3D Current Collector
2.3. Equipment for Electrochemical Characterization
3. Results and Discussion
3.1. Analysis of the Powders for the 3D Current Collectors Obtained by PBF-LB/M
3.2. Selecting of the Printing Parameters for Improved Geometric Accuracy
3.3. Analysis of the 3D Current Collectors Obtained by PBF-LB/M
3.4. The Electrochemical Properties Analysis
4. Conclusions
- To obtain the high-quality geometry of a 3D current collector, it is not reasonable to use the metal powder of a coarse fraction, as this will not provide the desirable level of accuracy. It has been demonstrated that the utilization of printing parameters comprising a laser power of 200 W, a scanning speed of 500 mm/s and a hatch distance of 0.25 mm, with a layer thickness of 0.03 mm, results in the lowest number of defects in the production of a 3D current collector. The optimal height of the 3D current collector structure for achieving high-quality geometry is 270 μm, which corresponds to nine layers of 30 μm each;
- In the first cycle, the capacitance characteristics of three-dimensional samples demonstrated discharge capacities of 189.79 mAh/g for Al-f and 192.06 mAh/g for AlSi10Mg. The Coulomb efficiencies for the samples were 86 and 92.5%, respectively. During cycling, due to the effect of working out the active masses, the values of the capacitances and Coulomb efficiency approached typical values and even exceeded them, in comparison to a sample with a foil current collector. Anisotropy of the conductive properties arose during the printing process, which must be considered when designing 3D current collectors, as it may have an impact on the capacitive and cyclic characteristics of the samples.
- Future Research Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Du, Z.; Sun, J.; Liu, Y.; Wang, K.; Du, H.; Ai, W.; Huang, W. On the Road to the Frontiers of Lithium-Ion Batteries: A Review and Outlook of Graphene Anodes. Adv. Mater. 2023, 35, 2210734. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Murdock, B.E.; Toghill, K.E.; Tapia-Ruiz, N. A Perspective on the Sustainability of Cathode Materials used in Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2102028. [Google Scholar] [CrossRef]
- Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321. [Google Scholar] [CrossRef]
- Yan, L.; Chen, Y.; Liou, F. Additive manufacturing of functionally graded metallic materials using laser metal deposition. Addit. Manuf. 2020, 31, 100901. [Google Scholar] [CrossRef]
- Gardner, L. Metal additive manufacturing in structural engineering—Review, advances, opportunities and outlook. Structures 2023, 47, 2178–2193. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Chen, X.; He, Y.; Cheng, L.; Huo, M.; Yin, J.; Hao, F.; Chen, S.; Wang, P.; et al. Additive manufacturing of structural materials. Mater. Sci. Eng. R Rep. 2021, 145, 100596. [Google Scholar] [CrossRef]
- Sefene, E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022, 63, 250–274. [Google Scholar] [CrossRef]
- Yamada, M.; Watanabe, T.; Gunji, T.; Wu, J.; Matsumoto, F. Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem 2020, 1, 124–159. [Google Scholar] [CrossRef]
- Li, Z.H.; Nie, Y.F.; Liu, B.; Kuai, Z.Z.; Zhao, M.; Liu, F. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting. Mater. Des. 2020, 192, 108709. [Google Scholar] [CrossRef]
- Vrána, R.; Koutecký, T.; Červinek, O.; Zikmund, T.; Pantělejev, L.; Kaiser, J.; Koutný, D. Deviations of the PBF-LB/M Produced Lattice Structures and Their Influence on Mechanical Properties. Materials 2022, 15, 3144. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Wu, L.; Liu, Z.; Wang, H.; Jia, X.; Chen, X.; Starostenkov, M.D.; Dong, G. Formability, surface quality and compressive fracture behavior of AlMgScZr alloy lattice structure fabricated by selective laser melting. J. Mater. Res. Technol. 2022, 19, 391–403. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.; McMurtrey, M.D.; Jerred, N.D.; Liou, F.; Li, J. Additive manufacturing for energy: A review. Appl. Energy 2021, 282, 116041. [Google Scholar] [CrossRef]
- Fonseca, N.; Thummalapalli, S.V.; Jambhulkar, S.; Ravichandran, D.; Zhu, Y.; Patil, D.; Thippanna, V.; Ramanathan, A.; Xu, W.; Guo, S.; et al. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. Small 2023, 19, 2302718. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Cao, Y.; Chu, Y.; Liu, M.; Snyder, K.; MacKenzie, D.; Cao, C. Additive Manufacturing of Batteries. Adv. Funct. Mater. 2020, 30, 1906244. [Google Scholar] [CrossRef]
- Ma, Y.; Li, K.; Li, C.; Miao, X.; Araki, T.; Wu, M. Corrosion behavior of selective laser melted 6061 aluminum alloy electrodes for aluminum-air battery. J. Power Sources 2024, 594, 233999. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustain. Chem. Eng. 2018, 6, 16968–16975. [Google Scholar] [CrossRef]
- Acord, K.A.; Dupuy, A.D.; Scipioni Bertoli, U.; Zheng, B.; West, W.C.; Chen, Q.N.; Shapiro, A.A.; Schoenung, J.M. Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes. J. Mater. Process. Technol. 2021, 288, 116827. [Google Scholar] [CrossRef]
- Chen, C.; Li, S.; Notten, P.H.L.; Zhang, Y.; Hao, Q.; Zhang, X.; Lei, W. 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. ACS Appl. Mater. Interfaces 2021, 13, 24785–24794. [Google Scholar] [CrossRef]
- Callegari, D.; Airoldi, L.; Brucculeri, R.; Anselmi, A.U.; Quartarone, E. Extrusion 3D Printing of Patterned Cu Current Collectors for Advanced Lithium Metal Anodes. Batter. Supercaps 2023, 6, e202300202. [Google Scholar] [CrossRef]
- Martinez, A.C.; Maurel, A.; Yelamanchi, B.; Talin, A.A.; Grugeon, S.; Panier, S.; Dupont, L.; Aranzola, A.; Schiaffino, E.; Sreenivasan, S.T.; et al. Combining 3D printing of copper current collectors and electrophoretic deposition of electrode materials for structural lithium-ion batteries. Adv. Manuf. 2024. [Google Scholar] [CrossRef]
- Asavavisithchai, S.; Kennedy, A.R. The effect of oxides in various aluminium powders on foamability. Procedia Eng. 2012, 32, 714–721. [Google Scholar] [CrossRef]
№ of Sets | P, W | v, mm/s | H, mm | h, mm | VED, J/mm3 |
---|---|---|---|---|---|
0 | 175 | 500 | 0.3 | 0.03 | 38.9 |
1 | 175 | 500 | 0.35 | 0.03 | 33.3 |
2 | 175 | 500 | 0.25 | 0.03 | 46.7 |
3 | 225 | 500 | 0.35 | 0.03 | 42.9 |
00 | 175 | 450 | 0.3 | 0.03 | 43.2 |
11 | 175 | 450 | 0.35 | 0.03 | 37.0 |
22 | 175 | 450 | 0.25 | 0.03 | 51.9 |
33 | 250 | 500 | 0.35 | 0.03 | 47.6 |
000 | 200 | 500 | 0.3 | 0.03 | 44.4 |
111 | 200 | 500 | 0.35 | 0.03 | 38.1 |
222 | 200 | 500 | 0.25 | 0.03 | 53.3 |
333 | 275 | 450 | 0.35 | 0.03 | 58.2 |
Vol. % | Powders | ||
---|---|---|---|
Al-f | Al-c | AlSi10Mg | |
<μm | <μm | <μm | |
10 | 22.4 | 75.4 | 17.1 |
50 | 61.1 | 169.8 | 39.6 |
90 | 107.7 | 272.9 | 65.7 |
Powders | Al, % | Si, % | Mg, % | Fe, % | O, % |
---|---|---|---|---|---|
Al-f | 99.92 | - | - | 0.08 | 0.046 |
Al-c | 99.35 | 0.18 | - | 0.47 | 0.041 |
AlSi10Mg | 87.88 | 11.28 | 0.53 | 0.31 | 0.057 |
Sample | Chg Capacity 1st Cycle, mAh/g | Dchg Capacity 1st Cycle, mAh/g | Chg Capacity 10th Cycle, mAh/g | Dchg Capacity 10th Cycle, mAh/g | Dchg Capacity 20th Cycle, mAh/g | Loss of Capacity, % |
---|---|---|---|---|---|---|
Al-f | 220.42 | 189.79 | 204.03 | 203.10 | 199.93 | 1.6 |
AlSi10Mg | 207.90 | 192.06 | 193.84 | 193.21 | 188.11 | 2.7 |
NCM811_foil | 179.60 | 179.69 | 176.45 | 175.49 | 159.41 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repnin, A.; Borisov, E.; Kosenko, A.; Pushnitsa, K.; Novikov, P.; Popovich, A. The Manufacture and Investigation of 3D Current Collectors in a Lithium Ion Battery Obtained by Laser Powder Bed Fusion. Metals 2024, 14, 1358. https://doi.org/10.3390/met14121358
Repnin A, Borisov E, Kosenko A, Pushnitsa K, Novikov P, Popovich A. The Manufacture and Investigation of 3D Current Collectors in a Lithium Ion Battery Obtained by Laser Powder Bed Fusion. Metals. 2024; 14(12):1358. https://doi.org/10.3390/met14121358
Chicago/Turabian StyleRepnin, Arseniy, Evgenii Borisov, Alexandra Kosenko, Konstantin Pushnitsa, Pavel Novikov, and Anatoliy Popovich. 2024. "The Manufacture and Investigation of 3D Current Collectors in a Lithium Ion Battery Obtained by Laser Powder Bed Fusion" Metals 14, no. 12: 1358. https://doi.org/10.3390/met14121358
APA StyleRepnin, A., Borisov, E., Kosenko, A., Pushnitsa, K., Novikov, P., & Popovich, A. (2024). The Manufacture and Investigation of 3D Current Collectors in a Lithium Ion Battery Obtained by Laser Powder Bed Fusion. Metals, 14(12), 1358. https://doi.org/10.3390/met14121358