Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Stress–Strain Curves
3.2. Constitutive Equation
3.3. Processing Map
3.4. Microstructure Evolution
3.4.1. Microstructure Evolution in the Single β Phase Field
3.4.2. Microstructure Evolution in the α + β Phase Field
4. Conclusions
- (1)
- The stress–strain curves of electron-beam cold-hearth-melted Ti-6Al-4V alloy for isothermal compression in the α + β and single β phase fields were obtained. The constitutive model was established based on the classical Arrhenius equation. In addition, a hot processing map was drawn, and it is a powerful tool to optimize the production process.
- (2)
- Microstructure evolution in the single β phase field presents different characteristics with the change in strain rate. When the strain rate is slow, there are more recrystallized grains, and the recrystallization of the β phase does not have enough time to occur when the strain rate is fast. At the strain rate of 10 s−1, there are obvious shear bands in the microstructure.
- (3)
- Microstructure evolution in the α + β phase field is more complicated. The morphology and crystallographic orientation of the microstructure changed simultaneously. Globularization is a typical microstructure evolution characteristic, which occurs mainly through dislocation slips. The Schmid factor of the prismatic {1-100}<11-20> slip is largest, the basal {0001}<11-20> slip is second, and the pyramidal slip {1-101}<11-20> is the smallest. Prismatic slips are easier to activate than basal and pyramidal slips. Moreover, globularization of the lamellar α phase is not synchronously crystallographic and morphological.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leyens, C.; Peters, M. Titanium and Titanium Alloys; Wiley-VCH: Weinheim, Germany, 2003; p. 513. [Google Scholar]
- Boyer, R.R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Sun, J.; Han, M.; Georg, R.; Jochen, F.; Yang, J.; Zhao, Y. An Investigation on electron beam cold hearth melting of Ti64 alloy. Rare Met. Mater. Eng. 2008, 37, 1973–1977. [Google Scholar] [CrossRef]
- Motrunich, S.; Berezos, V.; Kostin, V.; Klochkov, I.; Akhonin, D. Fatigue behavior and fracture of medical Ti-6Al-7Nb titanium alloy produced by electron beam cold hearth melting. Procedia Struct. Integr. 2024, 59, 58–65. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Jiang, Y. Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process. Vacuum 2017, 141, 1–9. [Google Scholar] [CrossRef]
- Momeni, A.; Abbasi, S.M. Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions. Mater. Des. 2010, 31, 3599–3604. [Google Scholar] [CrossRef]
- Jha, J.S.; Tewari, A.; Mishra, S.; Toppo, S. Constitutive Relations for Ti-6Al-4V Hot Working. Procedia Eng. 2017, 173, 755–762. [Google Scholar] [CrossRef]
- Ji, X.; Guo, B.; Jiang, F.; Yu, H.; Fu, D.; Teng, J.; Zhang, H.; Jonas, J.J. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain. J. Mater. Sci. Technol. 2020, 36, 160–166. [Google Scholar] [CrossRef]
- Cai, J.; Wang, K.; Han, Y. A Comparative study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict high-temperature flow behavior of Ti-6Al-4V alloy in α+β Phase. J. Mater. Eng. Perform. 2016, 35, 1952–1963. [Google Scholar] [CrossRef]
- Wanjara, P.; Jahazi, M.; Monajati, H.; Yue, S.; Immarigeon, J.P. Hot working behavior of near-α alloy IMI834. Mater. Sci. Eng. A 2005, 396, 50–60. [Google Scholar] [CrossRef]
- Chuan, W.; Liang, H. Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region. Vacuum 2018, 156, 384–401. [Google Scholar] [CrossRef]
- Su, Y.; Kong, F.; You, F.; Wang, X.; Chen, Y. The high-temperature deformation behavior of a novel near-α titanium alloy and hot-forging based on the processing map. Vacuum 2020, 173, 109135. [Google Scholar] [CrossRef]
- Ma, X.; Zeng, W.D.; Tian, F.; Zhou, Y.G. The kinetics of dynamic globularization during hot working of a two phase titanium alloy with starting lamellar microstructure. Mater. Sci. Eng. A 2012, 548, 6–11. [Google Scholar] [CrossRef]
- Park, C.H.; Won, J.W.; Park, J.W.; Semiatin, S.L.; Lee, C.S. Mechanisms and kinetics of static spheroidization of hot-worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a lamellar microstructure. Metall. Mater. Trans. A 2012, 43, 977–985. [Google Scholar] [CrossRef]
- Lin, Y.C.; Pang, G.; Jiang, Y.; Liu, X.; Zhang, X.; Chen, C.; Zhou, K. Hot compressive deformation behavior and microstructure evolution of a Ti55511 alloy with basket-weave microstructures. Vacuum 2019, 169, 108878. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.-Y.; Ren, Z.; Zhang, Y.; Xin, R.-L.; Liu, Q. Static globularization and grain morphology evolution of α and β phases during annealing of hot-rolled TC21 titanium alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 2664–2676. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.G.; Zhan, M.; Jiang, X.Q.; Liang, Y.F.; Zheng, H.J.; Liang, W.J. Revisiting the lamellar globularization behavior of a two-phase titanium alloy from the perspective of deformation modes. J. Mater. Process. Technol. 2021, 289, 116963. [Google Scholar] [CrossRef]
- Balachandran, S.; Kumar, S.; Banerjee, D. On recrystallization of the α and β phases in titanium alloys. Acta Mater. 2017, 131, 423–434. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Jia, Z.; Sun, X.; Zhou, J. Static globularization kinetics for Ti-17 alloy with initial lamellar microstructure. J. Alloys Compd. 2014, 603, 239–247. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Ma, H.; Zhou, D. Static globularization mechanism of Ti-17 alloy during heat treatment. J. Alloys Compd. 2018, 736, 99–107. [Google Scholar] [CrossRef]
- Seshacharyulu, T.; Medeiros, S.C.; Morgan, J.T.; Malas, J.C.; Frazier, W.G.; Prasad, Y.V.R.K. Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V. Mater. Sci. Eng. A 2000, 279, 289–299. [Google Scholar] [CrossRef]
- Zeng, W.D.; Shu, Y.; Zhang, X.M.; Zhou, Y.G.; Zhao, Y.Q.; Wu, H.; Dai, Y.; Yang, J.; Zhou, L. Hot workability and microstructure evolution of highly beta stabilised Ti–25V–15Cr–0.2Si alloy. Mater. Sci. Technol. 2008, 24, 1222–1229. [Google Scholar] [CrossRef]
- Li, A.B.; Huang, L.J.; Meng, Q.Y.; Geng, L.; Cui, X.P. Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α+β starting structure using processing map. Mater. Des. 2009, 30, 1625–1631. [Google Scholar] [CrossRef]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Gegel, H.L.; Doraivelu, S.M. Modeling of dynamic material behavior in hot deformation forging of Ti-6242. Metall. Trans. A. 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Processing maps for hot working of titanium alloys. Mater. Sci. Eng. A 1998, 243, 82–88. [Google Scholar] [CrossRef]
- Zeng, W.D.; Zhou, Y.G.; Zhou, J.; Yu, H.Q.; Zhang, X.M.; Xu, B. Recent development of processing map theory. Rare Met. Mater. Eng. 2006, 35, 673–677. [Google Scholar]
- Peng, X.; Guo, H.; Shi, Z.; Qin, C.; Zhao, Z.; Yao, Z. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map. Mater. Sci. Eng. A 2014, 605, 80–88. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Wang, Q.J.; Liu, J.R. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60. Acta Mater. 2017, 131, 305–314. [Google Scholar] [CrossRef]
- Xu, J.; Hu, W.; Ji, X.; Zeng, W. Evolution characteristics of orientation relationships during the co-evolution of α/β phase for Ti alloy. Mater. Charact. 2023, 203, 113111. [Google Scholar] [CrossRef]
- Shi, R.; Dixit, V.; Viswanathan, G.B.; Fraser, H.L.; Wang, Y.J.A.M. Experimental assessment of variant selection rules for grain boundary alpha in titanium alloys. Acta Mater. 2016, 102, 197–211. [Google Scholar] [CrossRef]
- Qiu, D.; Zhao, P.; Shi, R.; Wang, Y.; Lu, W. Effect of autocatalysis on variant selection of α precipitates during phase transformation in Ti-6Al-4V alloy. Comput. Mater. Sci. 2016, 124, 282–289. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Zhu, Z.; Li, M.; Du, J.; He, S.; Wang, X. Precipitation and evolution behaviors of grain boundary α and α side plates for ultra-high strength titanium alloy during continuous cooling. Mater. Des. 2023, 225, 111562. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Zhou, D.; Chen, W.; He, S.; Zhang, X. Analysis of crystallographic orientation and morphology of microstructure during hot working for an alpha/beta titanium alloy. J. Mater. Sci. Technol. 2020, 59, 1–13. [Google Scholar] [CrossRef]
Al | V | Fe | C | H | N | O | Ti |
---|---|---|---|---|---|---|---|
6.21 | 4.31 | 0.172 | 0.009 | 0.0008 | <0.003 | 0.12 | Balanced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Mao, C.; Zhou, W. Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy. Metals 2024, 14, 1459. https://doi.org/10.3390/met14121459
Jia W, Mao C, Zhou W. Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy. Metals. 2024; 14(12):1459. https://doi.org/10.3390/met14121459
Chicago/Turabian StyleJia, Weiju, Chengliang Mao, and Wei Zhou. 2024. "Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy" Metals 14, no. 12: 1459. https://doi.org/10.3390/met14121459
APA StyleJia, W., Mao, C., & Zhou, W. (2024). Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy. Metals, 14(12), 1459. https://doi.org/10.3390/met14121459