Structure and Mechanical Properties of Titanium Alloys

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 1686

Special Issue Editors


E-Mail Website
Guest Editor
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
Interests: titanium alloys; advanced forming technology; heat treatment; microstructure; performance; deformation mechanism; fatigue

E-Mail Website
Guest Editor
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
Interests: titanium alloys; advanced forming technology; heat treatment; microstructure; performance; deformation mechanism

Special Issue Information

Dear Colleagues,

As a pivotal branch of the titanium industry, titanium alloys with high strength (UTS ≥ 1100 MPa) are indispensable structural materials for cutting-edge engineering applications such as in the aerospace and marine fields. With the expanding market for high-strength titanium alloys, achieving optimal synergies of exceptional strength, remarkable ductility (El ≥ 8%), and outstanding toughness (KIC ≥ 50 MPa⋅m1/2) has been identified as the foremost technical bottleneck in their research and development. To overcome this challenge, the titanium community has initiated the following two primary strategies: developing novel alloys and innovating processing technologies. Based on the aforementioned reasons, this Special Issue focuses on advanced processing technology, microstructure and performance of titanium alloys with high strength, which include the advanced casting, forging, and heat treatment technologies, microstructure evaluation, mechanical properties, as well as deformation mechanism of titanium alloys.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following: Advanced processing technology; microstructure and performance of titanium alloys with high strength.

We look forward to receiving your contributions.

Prof. Dr. Chaowen Huang
Dr. Jianwei Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • titanium alloys
  • advanced forming technology
  • heat treatment
  • microstructure characterization
  • mechanical properties
  • deformation mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 12626 KiB  
Article
Study of the Intrinsic Factors Determining the Near-Threshold Fatigue Crack Propagation Behavior of a High-Strength Titanium Alloy
by Huan Wang, Yongqing Zhao, Ping Guo, Fei Qiang, Lei Zhang, Zhongli Qiao and Shewei Xin
Metals 2025, 15(1), 84; https://doi.org/10.3390/met15010084 - 17 Jan 2025
Viewed by 460
Abstract
The resistance to near-threshold fatigue crack growth and its correlation with the microstructure of the Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy were investigated. K-decreasing fatigue crack propagation rate tests were conducted on compact tension samples (ASTM standard) with a stress ratio R of 0.1 and a [...] Read more.
The resistance to near-threshold fatigue crack growth and its correlation with the microstructure of the Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy were investigated. K-decreasing fatigue crack propagation rate tests were conducted on compact tension samples (ASTM standard) with a stress ratio R of 0.1 and a frequency of 15 HZ in a laboratory atmosphere. At a similar strength level of 1200 MPa, the sample with a fine basket-weave microstructure (F-BW) displayed the slowest near-threshold fatigue crack propagation rate compared with the samples with equiaxed (EM) and basket-weave (BW) microstructures. The fatigue threshold value (ΔKth) was 4.4 MPa·m1/2 for F-BW, 3.6 for BW, and 3.2 for EM. The fracture surfaces and crack profiles were observed by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) to elucidate the mechanism of fatigue crack propagation in the near-threshold regime. The results revealed that the near-threshold crack growth in the three samples was primarily transgranular. The crack always propagated parallel to the crystal plane, with a high Schmid factor. In addition, the near-threshold fatigue crack growth behavior was synergistically affected by the crack tip plastic zone and crack bifurcation. The increased fatigue crack propagation resistance in F-BW was attributed to the better stress/strain compatibility and greater number of interface obstacles in the crack tip plastic zone. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

19 pages, 18132 KiB  
Article
Notch Fatigue Damage Evolution Mechanism of TC21 Alloy with Multilevel Lamellar Microstructures
by Xiaosong Zhou, Xiang Li, Chaowen Huang, Quan Wu and Fei Zhao
Metals 2025, 15(1), 18; https://doi.org/10.3390/met15010018 - 29 Dec 2024
Viewed by 411
Abstract
This study aims to explore the effect of microstructural parameters on the notch fatigue damage behavior of the TC21 alloy. Different levels of lamellar microstructures were achieved through distinct aging temperatures of 550 °C, 600 °C, and 650 °C. The findings reveal that [...] Read more.
This study aims to explore the effect of microstructural parameters on the notch fatigue damage behavior of the TC21 alloy. Different levels of lamellar microstructures were achieved through distinct aging temperatures of 550 °C, 600 °C, and 650 °C. The findings reveal that increasing aging temperature primarily contributes to the augmentation of α colony (αc) thickness, grain boundaries α phase (GBα) thickness, and α fine (αfine) size alongside a reduction in α lath (αlath) thickness and αfine content. The notch alters stress distribution and relaxation effects at the root, enhancing notched tensile strength while weakening plasticity. Moreover, the increased thickness of GBα emerges as a critical factor leading to the increase area of intergranular cleavage fracture. It is noteworthy that more thickness αlath and smaller αfine facilitate deformation coordination and enhance dislocation accumulation at the interface, leading to a higher propensity for micro-voids and micro-cracks to propagate along the interface. Conversely, at elevated aging temperatures, thinner αlath and larger αfine are more susceptible to fracture, resulting in the liberation of dislocations at the interface. The reduction in αlath thickness is crucial for triggering the initiation of multi-system dislocations at the interface, which promotes the development of persistent slip bands (PSBs) and dislocation nets within αlath. This phenomenon induces inhomogeneous plastic deformation and localized hardening, fostering the formation of micro-voids and micro-cracks. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

16 pages, 7065 KiB  
Article
Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy
by Weiju Jia, Chengliang Mao and Wei Zhou
Metals 2024, 14(12), 1459; https://doi.org/10.3390/met14121459 - 20 Dec 2024
Viewed by 498
Abstract
The deformation behavior and microstructure changes of electron-beam cold-hearth-melted (EBCHM) Ti-6Al-4V alloy were investigated. The stress–strain curves of the alloy were obtained, the constitutive model was established based on the Arrhenius equation, and the hot processing map was drawn. The results showed that [...] Read more.
The deformation behavior and microstructure changes of electron-beam cold-hearth-melted (EBCHM) Ti-6Al-4V alloy were investigated. The stress–strain curves of the alloy were obtained, the constitutive model was established based on the Arrhenius equation, and the hot processing map was drawn. The results showed that the stress of the alloy decreases with increasing temperature and decreasing strain rate. In the β phase field, there are more recrystallized grains when the strain rate is slow, and the recrystallization of the β phase does not have enough time to occur when the strain rate is fast. There are obvious shear bands in the microstructure at the strain rate of 10 s−1. In the α + β field, the morphology and crystallographic orientation of the microstructure changed simultaneously. Globularization is a typical microstructure evolution characteristic. The prismatic slip is easier to activate than basal and pyramidal slips. Moreover, globularization of the lamellar α phase is not synchronously crystallographic and morphological. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

Back to TopTop