Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Synthesis
2.2. Material Characterization
2.3. Cell Assembling and Electrochemical Characterization
3. Results and Discussion
3.1. Structural, Morphological, Thermal, and Surface Characterization
3.2. Electrochemical Characterizations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Gao, P.; Shen, B.; Wang, X.; Yue, T.; Han, Z. Recent advances in lignin-derived mesoporous carbon based-on template methods. Renew. Sustain. Energy Rev. 2023, 188, 113808. [Google Scholar] [CrossRef]
- Poorshakoor, E.; Darab, M. Advancements in the development of nanomaterials for lithium-ion batteries: A scientometric review. J. Energy Storage 2024, 75, 109638. [Google Scholar] [CrossRef]
- Liu, F.; Yu, D.; Shao, C.; Liu, X.; Su, W. A review of multi-state joint estimation for lithium-ion battery: Research status and suggestions. J. Energy Storage 2023, 73, 109071. [Google Scholar] [CrossRef]
- Shabir, A.; Hashmi, S.A.; Hor, A.A.; Julien, C.M.; Islam, S.S. Long-term prospects of nano-carbon and its derivatives as anode materials for lithium-ion batteries—A review. J. Energy Storage 2023, 72, 108178. [Google Scholar] [CrossRef]
- Zhong, C.; Weng, S.; Wang, Z.; Zhan, C.; Wang, X. Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries. Nano Energy 2023, 117, 108894. [Google Scholar] [CrossRef]
- Muchuweni, E.; Mombeshora, E.T.; Muiva, C.M.; Sathiaraj, T.S. Lithium-ion batteries: Recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials. J. Energy Storage 2023, 73, 109013. [Google Scholar] [CrossRef]
- Grira, S.; Alkhedher, M.; Abu Khalifeh, H.; Ramadan, M.; Ghazal, M. Using algae in Li-ion batteries: A sustainable pathway toward greener energy storage. Bioresour. Technol. 2024, 394, 130225. [Google Scholar] [CrossRef]
- Li, R.; Kamali, A.R. Molten salt assisted conversion of corn lignocellulosic waste into carbon nanostructures with enhanced Li-ion storage performance. Chem. Eng. Sci. 2023, 265, 118222. [Google Scholar] [CrossRef]
- Santos, B.L.P.; Vieira, I.M.M.; Ruzene, D.S.; Silva, D.P. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. Environ. Res. 2024, 244, 117879. [Google Scholar] [CrossRef]
- Mannaa, M.; Mansour, A.; Park, I.; Lee, D.W.; Seo, Y.S. Insect-based agri-food waste valorization: Agricultural applications and roles of insect gut microbiota. Environ. Sci. Ecotechnol. 2024, 17, 100287. [Google Scholar] [CrossRef]
- Sennu, P.; Aravindan, V.; Lee, Y.S. High energy asymmetric supercapacitor with 1D@2D structured NiCo2O4@Co3O4 and jackfruit derived high surface area porous carbon. J. Power Sources 2016, 306, 248–257. [Google Scholar] [CrossRef]
- Han, L.J.; Zhang, P.; Li, L.; Lu, S.Q.; Su, B.T.; An, X.C.; Lei, Z.Q. Nitrogen-containing carbon nano-onions-like and graphene-like materials derived from biomass and the adsorption and visible photocatalytic performance. Appl. Surf. Sci. 2021, 543, 148752. [Google Scholar] [CrossRef]
- Cruz, E.P.; Jansen, E.T.; Costa, L.V.; Souza, E.J.D.; Fonseca, L.M.; Gandra, E.A.; Zavareze, E.R.; Dias, A.R.G. Use of red onion skin (Allium cepa L.) in the production of bioactive extract and application in water-absorbing cryogels based on corn starch. Food Hydrocoll. 2023, 145, 109133. [Google Scholar] [CrossRef]
- Adeola, A.O.; Oyedotun, K.O.; Waleng, N.J.; Mamba, B.B.; Nomngongo, P.N. Onion skin–derived sorbent for the sequestration of methylparaben in contaminated aqueous medium. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Zhu, H.L.; Jia, Z.; Chen, Y.C.; Weadock, N.; Wan, J.Y.; Vaaland, O.; Han, X.G.; Li, T.; Hu, L.B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Liu, S.J.; Fang, G.L.; Geng, G.H.; Ma, J.F. From trash to treasure: Direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high performance supercapacitors in organic electrolyte. Electrochim. Acta 2016, 216, 405–411. [Google Scholar] [CrossRef]
- Yu, J.; Gao, L.Z.; Li, X.L.; Wu, C.; Gao, L.L.; Li, C.M. Porous carbons produced by the pyrolysis of green onion leaves and their capacitive behavior. New Carbon Mater. 2016, 31, 475–484. [Google Scholar] [CrossRef]
- Li, S.; Kamali, A.R. Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance. Appl. Energy 2023, 334, 120692. [Google Scholar]
- Zhu, W.H.; Kamali, A.R. Molten Salt-Assisted Catalytic Preparation of MoS2/α-MoO3/Graphene as High-Performance Anode of Li-Ion Battery. Catalysts 2023, 13, 499. [Google Scholar] [CrossRef]
- Zhu, W.H.; Kamali, A.R. Thermal oxidation of MoS2 into defective crystalline MoO3 with enhanced Li-ion storage kinetics. J. Alloys Compd. 2023, 968, 171823. [Google Scholar] [CrossRef]
- Zhu, W.H.; Kamali, A.R. Green preparation of nanostructured β-MoO3/hexagonal-shaped MoS2/graphene with enhanced lithium-ion storage performance. J. Alloys Compd. 2023, 932, 167724. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, J.; Kwon, H.; Song, H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 2009, 21, 803–807. [Google Scholar] [CrossRef]
- Li, Z.F.; Xie, G.M.; Wang, C.X.; Liu, Z.J.; Chen, J.; Zhong, S.W. Binder free Cu2O/CuO/Cu/Carbon-polymer composite fibers derived from metal/organic hybrid materials through electrodeposition method as high performance anode materials for lithium-ion batteries. J. Alloys Compd. 2021, 864, 158585. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, H.; Lu, L.; Xue, J.M. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J. Mater. Chem. 2012, 22, 5006–5012. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.L.; Xie, Z.J.; An, C.H.; Jiang, G.X.; Wang, Y.J. 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes. J. Alloys Compd. 2020, 815, 152337. [Google Scholar] [CrossRef]
- Liu, J.; Xia, H.; Lu, L.; Xue, D.F. Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J. Mater. Chem. 2010, 20, 1506–1510. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Liu, C.G.; Yi, R.W.; Li, Z.Q.; Chen, Y.B.; Li, Y.Q.; Mitrovic, I.; Taylor, S.; Chalker, P.; Yang, L. Facile preparation of Co3O4 nanoparticles incorporating with highly conductive MXene nanosheets as high-performance anodes for lithium-ion batteries. Electrochim. Acta 2020, 345, 136203. [Google Scholar] [CrossRef]
- Lou, Y.B.; He, D.; Wang, Z.F.; Hu, Y.H.; Shen, Y.; Ming, J.; Chen, J.X. Nanocomposite of ultrasmall Co3O4 nanoparticles deposited on ultrathin MoS2 surfaces for excellent performance anode materials in lithium ion batteries. Chem. Eng. J. 2017, 313, 1269–1277. [Google Scholar] [CrossRef]
- Ji, L.W.; Lin, Z.; Alcoutlabi, M.; Zhang, X.W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Xia, X.H.; Tu, J.P.; Mai, Y.J.; Wang, X.L.; Gu, C.D.; Zhao, X.B. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 2011, 21, 9319–9325. [Google Scholar] [CrossRef]
- Chen, H.H.; He, J.; Li, Y.L.; Luo, S.; Sun, L.N.; Ren, X.Z.; Deng, L.B.; Zhang, P.X. Hierarchical CuOx-Co3O4 heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries. J. Mater. Chem. 2019, A7, 7691–7700. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, W.J.; Tao, X.Y.; Xia, Y.; Yu, Z.Y.; Fang, J.W.; Gan, Y.P.; Zhang, W.K. Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 5974–5980. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.G.; Hu, J.S.; Wan, L.J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887. [Google Scholar] [CrossRef]
- Kim, M.G.; Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497–1514. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Yu, J.; Zhang, S.; Chen, Q.; Lu, W.; Yuan, A.; Zhong, L.; Sun, L. Hierarchical structure promoted lithiation/delithiation behavior of a double-carbon microsphere supported nano-Co3O4 anode. Nanoscale 2024. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.G.; Chang, S.J.; Lee, Y.B.; Bae, J.S.; Kim, H.J.; Huh, Y.S. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 2012, 4, 5924–5930. [Google Scholar] [CrossRef] [PubMed]
- Li, D.H.; Yang, D.J.; Zhu, X.Y.; Jing, D.W.; Xia, Y.Z.; Ji, Q.; Cai, R.S.; Li, H.L.; Che, Y.K. Simple pyrolysis of cobalt alginate fibres into Co3O4/C nano/microstructures for a high-performance lithium ion battery anode. J. Mater. Chem. A 2014, 2, 18761–18766. [Google Scholar] [CrossRef]
- Du, H.R.; Huang, K.F.; Li, M.; Xia, Y.Y.; Sun, Y.X.; Yu, M.K.; Geng, B.Y. Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano. Res. 2018, 11, 1490–1499. [Google Scholar] [CrossRef]
- Chen, D.M.; Wang, Z.; Wu, Y.C.; Feng, P.; Wang, W.J.; Huang, Z.Q.; Chen, J. Introducing heteroatoms, oxygen vacancies and heterostructures in Co3O4 wrapped in carbon nanofibers by low-temperature vulcanization for lithium-ion storage. J. Alloys Compd. 2024, 970, 172529. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C.; Sagboye, P.A.; Micheal, K.T.; Micheal, T.T.; Saliu, O.D.; James, R. Biomass-derived activated carbon monoliths: A review of production routes, performance, and commercialization potential. J. Clean. Prod. 2023, 423, 138711. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Wei, Y.; Bao, J.; Zhang, N. Oxygen vacancies tuning over Co3O4 nanosheet preferentially growing (2 2 0) facet for efficient Hg0 removal from flue gas. Fuel 2024, 361, 130675. [Google Scholar] [CrossRef]
- Yue, F.; Duan, W.; Li, R.; Huang, M.; Wei, T.; Lv, X.; Wu, J.; Yang, C.; Yang, C.; Lu, Y.; et al. Ce dissolution induced in situ generating oxygen defects of Co3O4 boosting electrocatalytic oxidation of 5-hydroxymethylfurfural. Appl. Surf. Sci. 2024, 649, 159223. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Kamali, A.R. Green Production of Carbon Nanomaterials in Molten Salts and Applications; Springer Nature: Singapore, 2023. [Google Scholar]
- Kamali, A.R. Nanocatalytic conversion of CO2 into nanodiamonds. Carbon 2017, 123, 205–215. [Google Scholar] [CrossRef]
- Kamali, A.R.; Feighan, J.; Fray, D.J. Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics. Faraday Discuss. 2016, 190, 451–470. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Lian, G.J.; Parker, J.; Ge, R.; Sadan, M.K.; Smith, R.; Cumming, D. Effect of carbon blacks on electrical conduction and conductive binder domain of next-generation lithium-ion batteries. J. Power Sources 2024, 5921, 233916. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Khan, Z.; Kim, S.P.K.; Ko, H.; Kim, Y. Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J. Mater. Chem. A 2015, 3, 21553–21561. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.W.; Han, B.; Wang, Q.R.; Ke, R.H.; Zhang, T.; Ao, X.H.; Zhang, G.Z.; Liu, Z.B.; Qian, Y.X.; et al. Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries. J. Energy Chem. 2024, 88, 532–542. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K.T. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, H.E.Z.; Jiang, W.; Wang, Q.; Wang, S.; Ju, J.; Kwon, Y.U.; Zhao, Y. Improved capacity and cycling stability of SnO2 nanoanode induced by amorphization during cycling for lithium-ion batteries. Mater. Des. 2019, 180, 107973. [Google Scholar] [CrossRef]
- Amin, A.S.; Zhao, W.; Toloueinia, P.; Perera, I.P.; Fee, J.; Su, Y.; Posada, L.F.; Suib, S.L. Cycling-Induced Capacity Increase of Bulk and Artificially Layered LiTaO3 Anodes in Lithium-Ion Batteries. ACS Nano 2023, 17, 20203–20217. [Google Scholar] [CrossRef]
- AbdelHamid, A.A.; Mendoza-Garcia, A.; Lee, S.S.; Ying, J.Y. Metal oxide- and metal-loaded mesoporous carbon for practical high-performance Li-ion battery anodes. Nano Energy 2024, 119, 109025. [Google Scholar] [CrossRef]
- Huang, G.Y.; Xu, S.M.; Lu, S.S.; Li, L.Y.; Sun, H.Y. Micro-/Nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243. [Google Scholar] [CrossRef]
- Xiong, C.Y.; Li, B.B.; Dang, W.H.; Zhao, W.; Duan, C.; Dai, L.; Ni, Y.H. Co/CoS nanofibers with flower-like structure immobilized in carbonated porous wood as bifunctional material for high-performance supercapacitors and catalysts. Mater. Des. 2020, 195, 108942. [Google Scholar] [CrossRef]
- Wu, J.F.; Zuo, L.; Song, Y.H.; Chen, Y.Q.; Zhou, R.H.; Chen, S.H.; Wang, L. Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J. Alloys Compd. 2016, 656, 745–752. [Google Scholar] [CrossRef]
- Zhuo, L.H.; Wu, Y.Q.; Ming, J.; Wang, L.Y.; Yu, Y.C.; Zhang, X.B.; Zhao, F.Y. Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 1141–1147. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.P.; Huang, Y.D.; Jia, D.Z.; Liu, H.K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991. [Google Scholar] [CrossRef]
- Kim, H.; Seo, D.H.; Kim, S.W.; Kim, J.; Kang, K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 2011, 49, 326–332. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, Q.; Zhou, K.; Zhang, L.; Tan, T. Integrated machine learning methods with oversampling technique for regional suitability prediction of waste-to-energy incineration projects. Waste Manag. 2024, 174, 251–262. [Google Scholar] [CrossRef]
- Taer, E.; Apriwandi, A.; Farma, R.; Taslim, R. Synthesis of highly self-N-O-dual doped unique carbon blooming flower-like nanofiber derived novel snake-plant waste for ultrahigh energy of solid-state-supercapacitor. Chem. Eng. Sci. 2024, 285, 119566. [Google Scholar] [CrossRef]
- Kamali, A.R.; Zhao, H. Electrochemical conversion of natural graphite minerals into carbon nanostructures incorporated with Fe3Si for Li-ion storage application. J. Alloys Compd. 2023, 949, 169819. [Google Scholar] [CrossRef]
- Biber, B.; Sander, S.; Martin, J.; Wohlfahrt-Mehrens, M.; Mancini, M. Improved production process with new spheroidization machine with high efficiency and low energy consumption for rounding natural graphite for Li-ion battery applications. Carbon 2023, 201, 847–855. [Google Scholar] [CrossRef]
- Ferdoush, M.R.; Al Aziz, R.; Karmaker, C.L.; Debnath, B.; Limon, M.H.; Bari, A. Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability. Innov. Green Dev. 2024, 3, 100121. [Google Scholar] [CrossRef]
- Boulanger, N.; Talyzin, A.V.; Xiong, S.; Hultberg, M.; Grimm, A. High surface area activated carbon prepared from wood-based spent mushroom substrate for supercapacitors and water treatment. Colloids Surf. A 2024, 680, 132684. [Google Scholar] [CrossRef]
- Wei, S.; Kamali, A.R. Green conversion of waste PET into magnetic Ni0·4Fe2·6O4/(Fe,Ni)@carbon nanostructure for adsorption and separation of dyes from aqueous media. Chemosphere 2023, 342, 140172. [Google Scholar] [CrossRef] [PubMed]
- Radenković, M.; Petrović, J.; Pap, S.; Krstulović, N.; Živković, S. Waste biomass derived highly-porous carbon material for toxic metal removal: Optimisation, mechanisms and environmental implications. Chemosphere 2024, 347, 140684. [Google Scholar] [CrossRef]
- Arıcı, Ş.; Kaçmaz, E.G.; Kamali, A.R.; Ege, D. Influence of graphene oxide and carbon nanotubes on physicochemical properties of bone cements. Mater. Chem. Phys. 2023, 293, 126961. [Google Scholar] [CrossRef]
- Ege, D.; Nawaz, Q.; Beltrán, A.M.; Boccaccini, A.R. Effect of Boron-Doped Mesoporous Bioactive Glass Nanoparticles on C2C12 Cell Viability and Differentiation: Potential for Muscle Tissue Application. ACS Biomater. Sci. Eng. 2022, 5273–5283. [Google Scholar] [CrossRef]
- Wang, S.; Chai, Y.; Wang, Y.; Luo, G.; An, S. Review on the Application and Development of Biochar in Ironmaking Production. Metals 2023, 13, 1844. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Li, D.; Ng, K.W.; Huang, X. Ranking of Injection Biochar for Slag Foaming Applications in Steelmaking. Metals 2023, 13, 1003. [Google Scholar] [CrossRef]
- Meng, T.; Shi, H.; Ao, F.; Lu, Y.; Zhao, Y. Study on Nitrogen-Doped Biomass Carbon-Based Composite Cobalt Selenide Heterojunction and Its Electrocatalytic Performance. Metals 2023, 13, 767. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Farfan, J.; Lohrmann, A.; Kraslawski, A. Environmental benefits of circular economy approach to use of cobalt. Glob. Environ. Change 2022, 76, 102568. [Google Scholar] [CrossRef]
- Parekh, M.H.; Palanisamy, M.; Pol, V.G. Reserve lithium-ion batteries: Deciphering in situ lithiation of lithium-ion free vanadium pentoxide cathode with graphitic anode. Carbon 2023, 203, 561–570. [Google Scholar] [CrossRef]
- Ln, X.; Xiong, X.; Cui, J.; Hu, R. Reducing voltage hysteresis of metal oxide anodes to achieve high energy efficiency for Li-ion batteries. J. Energy Chem. 2023, 83, 433–444. [Google Scholar] [CrossRef]
- Zhou, S.; Meng, X.; Fu, C.; Chang, Z.; Chen, Y.; Xu, D.; Lin, S.; Han, C.; Chang, Z.; Pan, A. Lithiophilic Magnetic Host Facilitates Target-Deposited Lithium for Practical Lithium-Metal Batteries. Small 2023, 19, 2207764. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, T.; Ege, D.; Kamali, A.R. Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application. Metals 2024, 14, 191. https://doi.org/10.3390/met14020191
Liu Y, Sun T, Ege D, Kamali AR. Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application. Metals. 2024; 14(2):191. https://doi.org/10.3390/met14020191
Chicago/Turabian StyleLiu, Yunan, Ting Sun, Duygu Ege, and Ali Reza Kamali. 2024. "Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application" Metals 14, no. 2: 191. https://doi.org/10.3390/met14020191
APA StyleLiu, Y., Sun, T., Ege, D., & Kamali, A. R. (2024). Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application. Metals, 14(2), 191. https://doi.org/10.3390/met14020191