Numerical Analysis of Molten Pool Dynamic Behaviors during High-Speed Oscillation Laser Welding with Aluminum Alloy
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Governing Equations
2.2. Laser Energy Absorption
2.3. The VOF Method
2.4. Boundary Conditions
2.5. Numerical Implementation
3. Experiments
3.1. Material
3.2. Laser Welding System
3.3. Experimental Results Analysis
4. Results and Discussion
4.1. Model Validation
4.2. Temperature Distribution of Molten Pool
4.3. Dynamic Behaviors of Molten Pool
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhemchuzhnikova, D.; Zollinger, J. Microstructure formation in 6061 aluminum alloy during nano-second pulsed laser processing. J. Mater. Process. Technol. 2023, 314, 117898. [Google Scholar] [CrossRef]
- Mohamed, M.; Mohamed, S.; Dariusz, F.; Çam, G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. [Google Scholar]
- Daniel, W.; Antti, S.; Fernando, L.; Comesaña, R.; García, J.D.V.; Rodríguez, A.R.; Badaoui, A.; Pou, J. Recent Developments in Laser Welding of Aluminum Alloys to Steel. Metals 2021, 11, 622. [Google Scholar]
- Deng, A.; Chen, H.; Zhang, Y.; Liu, Y.; Yang, X.; Zhang, Z.; Zhang, B.; He, D. Prediction of the influence of welding metal composition on solidification cracking of laser welded aluminum alloy. Mater. Commun. 2023, 35, 105556. [Google Scholar] [CrossRef]
- Norouzian, M.; Elahi, M.; Plapper, P. A review: Suppression of the solidification cracks in the laser welding process by controlling the grain structure and chemical compositions. J. Adv. Join. Process. 2023, 7, 100139. [Google Scholar] [CrossRef]
- Deepak, J.; Anirudh, R.; Sundar, S. Applications of lasers in industries and laser welding: A review. Mater. Proc. 2023, 5, 108559. [Google Scholar] [CrossRef]
- Bunaziv, I.; Akselsen, O.; Ren, X.; Nyhus, B.; Eriksson, M. Laser beam and laser-arc hybrid welding of aluminum alloys. Metals 2021, 11, 1150. [Google Scholar] [CrossRef]
- Ma, G.; Yue, K.; Liu, D.; Wang, R.; Niu, F.; Wu, D. Cracking susceptibility control of 7075 aluminum alloy in pulsed laser welding with filler strip. Opt. Laser Technol. 2022, 152, 108119. [Google Scholar] [CrossRef]
- Indhu, R.; Manish, T.; Vijayaraghavan, L.; Soundarapandian, S. Microstructural evolution and its effect on joint strength during laser welding of dual phase steel to aluminum alloy. J. Manuf. Process. 2020, 58, 236–248. [Google Scholar]
- Xu, L.; Tang, X.; Han, S.; Huang, S.; Shao, C.; Cui, H. Study on full-penetration laser welding of aluminum alloy under electromagnetic field support and subatmospheric pressure. J. Mater. Process. Technol. 2023, 320, 118105. [Google Scholar] [CrossRef]
- Kang, S.; Shin, J. The effect of laser beam intensity distribution on weld characteristics in laser welded aluminum alloy (AA5052). Opt. Laser Technol. 2021, 142, 107239. [Google Scholar] [CrossRef]
- Oana, S.; Karancsi, O.; Mitelea, I.; Uţu, I.D.; Craciunescu, C.M. The role of filler material selection in the laser welding process of deformable 6xxx series aluminum alloys. Mater. Today Proc. 2023, 78, 287–294. [Google Scholar] [CrossRef]
- Herinandrianina, R.; Noureddine, B.; Sofiene, A. Optimization of parameters in laser welding of aluminum alloy 5052-H32 using beam oscillation technique for mechanical performance improvement. Int. J. Lightweight Mater. Manuf. 2022, 5, 470–483. [Google Scholar]
- Jiang, L.; Lin, S.; Lu, Y.; Xiang, Y.; Zhang, C.; Gao, M. Effects of sidewall grain growth on pore formation in narrow gap oscillating laser welding. Opt. Laser Technol. 2022, 156, 108483. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Meng, X.; Tan, C.; Chen, B.; Song, X. Effect of magnetic field orientation on suppressing porosity in steady-magnetic-field-assisted aluminum alloy deep-penetration laser welding. J. Mater. Process. Technol. 2022, 304, 117569. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Mi, G.; Zhang, X. Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding. J. Mater. Process. Technol. 2022, 304, 117569. [Google Scholar] [CrossRef]
- Ke, W.; Bu, X.; Oliveira, J.; Xu, W.; Wang, Z.; Zeng, Z. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Opt. Laser Technol. 2021, 133, 106540. [Google Scholar] [CrossRef]
- Beiranvand, Z.; Ghaini, F.; Moosavy, H.; Sheikhi, M.; Torkamany, M.J.; Moradi, M. The relation between magnesium evaporation and laser absorption and weld penetration in pulsed laser welding of aluminum alloys: Experimental and numerical investigations. Opt. Laser Technol. 2020, 128, 106170. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, Y.; Liu, Y.; Wang, J.; Wang, L.; Zhan, X. Porosity morphology and its evolution mechanism in laser mirror welding of 2219 aluminum alloy. Opt. Laser Technol. 2023, 164, 109456. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, X.; Hang, Y.; Yu, L. Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding. Int. J. Heat Mass Transf. 2020, 160, 120103. [Google Scholar] [CrossRef]
- Xu, G.; Li, P.; Cao, Q.; Hu, Q.; Gu, X.; Du, B. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress. Opt. Laser Technol. 2018, 100, 244–253. [Google Scholar] [CrossRef]
- Ai, Y.; Jiang, P.; Wang, C.; Mi, G.; Geng, S. Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding. Int. J. Heat Mass Transf. 2018, 126, 779–789. [Google Scholar] [CrossRef]
- Artinov, A.; Bachmann, M.; Rethmeier, M. Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. Int. J. Heat Mass Transf. 2018, 122, 1003–1013. [Google Scholar] [CrossRef]
- Ai, Y.; Yu, L.; Huang, Y.; Liu, X. The investigation of molten pool dynamic behaviors during the “∞” shaped oscillating laser welding of aluminum alloy. Int. J. Therm. Sci. 2022, 173, 107350. [Google Scholar] [CrossRef]
- Cho, J.; Farson, D.; Hollis, K.; Milewski, J. Numerical analysis of weld pool oscillation in laser welding. J. Mech. Sci. Technol. 2015, 29, 1715–1722. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Tian, S.; Gu, Y.; Zhan, X. Study on keyhole coupling and melt flow dynamic behaviors simulation of 2219 aluminum alloy T-joint during the dual laser beam bilateral synchronous welding. J. Manuf. Process. 2020, 60, 200–212. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Zhou, X.; Zhan, X. Effect of droplet transition on the dynamic behavior of the keyhole during 6061 aluminum alloy laser-MIG hybrid welding. Int. J. Adv. Manuf. Technol. 2020, 199, 897–909. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, X.; Hang, Y.; Yu, L. Numerical analysis of weld bead formation process in the dissimilar material fiber laser welding. J. Laser Appl. 2021, 33, 042055. [Google Scholar] [CrossRef]
- Ramiarison, H.; Barka, N.; Pilcher, C.; Stiles, E.; Larrimore, G.; Amira, S. Weldability improvement by wobbling technique in high power density laser welding of two aluminum alloys: Al-5052 and Al-6061. J. Laser Appl. 2021, 33, 032015. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, P.; Wang, Y.; Zhao, J.; Geng, S. Multi-physics simulation of wobbling laser melting injection of aluminum alloy with SiC particles: SiC particles gradient distribution in fusion zone. Int. J. Heat Mass Transf. 2022, 182, 121960. [Google Scholar] [CrossRef]
- Chen, L.; Mi, G.; Zhang, X.; Wang, C. Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding. J. Mater. Process. Technol. 2021, 298, 117314. [Google Scholar] [CrossRef]
- Ai, Y.; Yan, Y.; Yu, L.; Cheng, J. The Analysis of Energy Distribution Characteristics of Molten Pool in Welding of Aluminum Alloy with Oscillating Laser. Sustainability 2023, 15, 6868. [Google Scholar] [CrossRef]
Name | Symbol | Value | Unit |
---|---|---|---|
Density | 2660 | kg/m3 | |
Thermal expansion coefficient | 2.8 × 10−5 | 1/K | |
Solidus conductivity | 235 | W/(m·K) | |
Liquidus conductivity | 95 | W/(m·K) | |
Solidus temperature | 873.15 | K | |
Liquidus temperature | 915.15 | K | |
Fusion latent heat | 3.9 × 105 | J/kg | |
Convection coefficient | 20 | W/(m2 K) |
Si | Fe | Cu | Mn | Mg | Zn | Ti | Cr | Al |
---|---|---|---|---|---|---|---|---|
0.56 | 0.70 | 0.30 | 0.89 | 0.93 | 0.25 | 0.15 | 0.04 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, Y.; Yan, Y.; Han, S. Numerical Analysis of Molten Pool Dynamic Behaviors during High-Speed Oscillation Laser Welding with Aluminum Alloy. Metals 2024, 14, 192. https://doi.org/10.3390/met14020192
Ai Y, Yan Y, Han S. Numerical Analysis of Molten Pool Dynamic Behaviors during High-Speed Oscillation Laser Welding with Aluminum Alloy. Metals. 2024; 14(2):192. https://doi.org/10.3390/met14020192
Chicago/Turabian StyleAi, Yuewei, Yachao Yan, and Shibo Han. 2024. "Numerical Analysis of Molten Pool Dynamic Behaviors during High-Speed Oscillation Laser Welding with Aluminum Alloy" Metals 14, no. 2: 192. https://doi.org/10.3390/met14020192
APA StyleAi, Y., Yan, Y., & Han, S. (2024). Numerical Analysis of Molten Pool Dynamic Behaviors during High-Speed Oscillation Laser Welding with Aluminum Alloy. Metals, 14(2), 192. https://doi.org/10.3390/met14020192