Atomic-Scale Dislocation Structure Evolution and Crystal Ordering Analysis of Melting and Crystallization Microprocesses in Laser Powder Bed Melting of γ-TiAl Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atomic Structure Details
2.2. Interatomic Potential
2.3. Simulation Procedures
3. Results and Discussion
3.1. Temperature and Structural Evolution
3.2. Atomic Ordering Analysis of Melting and Crystallization Evolution
3.3. Atomic Displacement Analysis of Melting and Crystallization Evolution
3.4. Defect Evolution during Melting and Crystallisation Evolution
4. Conclusions
- (1)
- As the laser scanning speed decreases, the exposure time significantly increases, further promoting the displacement and diffusion processes of powder particles, which are conducive to improving the final forming quality;
- (2)
- The melting and crystallization process of γ-TiAl alloy in the LPBF process does not alter the original crystal structure. However, the atomic order of the atoms after powder bed forming is slightly reduced by 19% due to the thermal-stress coupling introduced by the laser heating process;
- (3)
- When the laser power increases from 200 to 400 eV/ps, the stable value of atomic displacement rises from 6.66 to 320.87, while it rises from 300.54 to 550.14 when the scanning speed is attenuated from 0.8 to 0.4 Å/ps, which indicates that, compared with the scanning speed, the atomic mean-square displacements are relatively more sensitive to the fluctuation of laser power;
- (4)
- The increase in the laser power or scanning speed exacerbates the high heating and cooling rate brought about by the rapid heating and cooling characteristics of laser processing, which hinders the displacement and diffusion of particles, causing stress concentration and ultimately inducing the initiation and extension of defects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HCP | Hexagonal Close-Packed |
LPBF | Laser Powder Bed Fusion |
EAM | Embedded Atom Method |
MSD | Mean Squared Displacement |
FCC | Faced-Centered Cubic |
RDF | Radial Distribution Function |
FCT | Face-Centered Tetragonal |
References
- Caliari, T.; Ribeiro, L.C.; Pietrobelli, C.; Vezzani, A. Global value chains and sectoral innovation systems: An analysis of the aerospace industry. Struct. Change Econ. Dyn. 2023, 65, 36–48. [Google Scholar] [CrossRef]
- Soni, R.; Verma, R.; Garg, R.K.; Sharma, V. A critical review of recent advances in the aerospace materials. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Nagalingam, A.P.; Gopasetty, S.K.; Wang, J.; Yuvaraj, H.K.; Gopinath, A.; Yeo, S.H. Comparative fatigue analysis of wrought and laser powder bed fused Ti-6Al-4V for aerospace repairs: Academic and industrial insights. Int. J. Fatigue 2023, 176, 107879. [Google Scholar] [CrossRef]
- Li, Z.; Wen, Z.; Liu, Y.; He, P.; Dai, Y.; Chen, R.; Yue, Z. Low cycle fatigue behavior and crack initiation mechanism of Ni-based single crystal curved thin-walled blade simulator specimen with film cooling holes. Int. J. Fatigue 2024, 179, 108069. [Google Scholar] [CrossRef]
- Tetsui, T. Impact resistance of commercially applied TiAl alloys and simple-composition TiAl alloys at various temperatures. Metals 2022, 12, 2003. [Google Scholar] [CrossRef]
- Ellard, J.J.; Mathabathe, M.N.; Siyasiya, C.W.; Bolokang, A.S. Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review. Metals 2023, 13, 1491. [Google Scholar] [CrossRef]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Sharma, V.; Tan, X.; Krishnan, P.S.R.; Tekumalla, S.; Duchamp, M.; Xu, X.; Ding, H.; Chaudhary, V.; Ramanujan, R.V. Improved mechanical properties of a Ti-48Al alloy processed by mechanical alloying and spark plasma sintering. Mater. Today Commun. 2023, 35, 105831. [Google Scholar] [CrossRef]
- Shaaban, A.; Nakashima, H.; Ueda, M.; Takeyama, M. Effects of oxygen addition on the microstructure, phase transformations, and oxidation resistance of TiAl alloys. J. Alloys Compd. 2022, 918, 165716. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Jiang, X.; Liu, R.; Yan, W.; Chen, S.; Wang, L. Isothermal oxidation behaviour of TiAl alloys prepared by spark plasma sintering with the addition of Gd under water vapour at 900 °C. Intermetallics 2023, 153, 107796. [Google Scholar] [CrossRef]
- Kang, J.; Cui, Y.; Zhong, D.; Qiu, G.; Lv, X. A New Method for Preparing Titanium Aluminium Alloy Powder. Metals 2023, 13, 1436. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, M.; Ye, T.; Liang, Y.; Ren, Y.; Dong, C.; Lin, J. Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. Acta Mater. 2018, 145, 504–515. [Google Scholar] [CrossRef]
- Wu, D.; Xin, J.X.; Li, F.; Shen, C.; Wang, L.; Hua, X.; Lei, H.; Ma, N. Crack suppression in wire-arc directed energy deposition of a γ-TiAl alloy. J. Manuf. Process. 2023, 107, 155–165. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Du, Y.; Yuan, J. Effects of Powder Preparation and Sintering Temperature on Properties of Spark Plasma Sintered Ti-48Al-2Cr-8Nb Alloy. Metals 2019, 9, 861. [Google Scholar] [CrossRef]
- Yan, M.; Yang, F.; Zhang, H.; Yang, G.; Zhang, H.; Zhang, C.; Qi, M.; Zhang, J.; Chen, C.; Guo, Z. Fine duplex Ti-48Al alloy with high strength produced by forging based on near-γ microstructure. J. Alloys Compd. 2023, 942, 169058. [Google Scholar] [CrossRef]
- Alami, A.H.; Olabi, A.G.; Alashkar, A.; Alasad, S.; Aljaghoub, H.; Rezk, H.; Abdelkareem, M.A. Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals. Ain Shams Eng. J. 2023, 14, 102516. [Google Scholar] [CrossRef]
- Boretti, A. A techno-economic perspective on 3D printing for aerospace propulsion. J. Manuf. Process. 2024, 109, 607–614. [Google Scholar] [CrossRef]
- Wang, M.; Luo, H.; Du, Y.; Liao, W.; Deng, Y. Structural transformation behavior in a high Nb–TiAl alloy additively manufactured by laser powder bed fusion. J. Mater. Res. Technol. 2024, 28, 168–175. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Elkatatny, S.; Abd-Elaziem, A.E.; Khedr, M.; Abd El-baky, M.A.; Hassan, M.A.; Abu-Okail, M.; Mohammed, M.; Järvenpää, A.; Allam, T.; et al. On the current research progress of metallic materials fabricated by laser powder bed fusion process: A review. J. Mater. Res. Technol. 2022, 20, 681–707. [Google Scholar] [CrossRef]
- Peng, X.; Yuan, L.; Dai, D.; Liu, Y.; Li, D.; Zhu, D.; Fang, Z.; Ma, C.; Gu, D.; Wu, M. Novel Class of Additive Manufactured NiTi-Based Hierarchically Graded Chiral Structure with Low-force Compressive Actuation for Elastocaloric Heat Pumps. Chin. J. Mech. Eng. 2023, 2, 100077. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Bai, P.; Du, W.; Wang, S. EBSD investigation on the microstructure of Ti48Al2Cr2Nb alloy hot isostatic pressing formed by Selective laser melting (SLM). Mater. Lett. 2022, 309, 131334. [Google Scholar] [CrossRef]
- Ismaeel, A.; Wang, C.S. Effect of Nb additions on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting. Trans. Nonferrous Met. Soc. China 2019, 29, 1007–1016. [Google Scholar] [CrossRef]
- Sanchez-Poncela, M.; Cabeza, S.; Martinez, J.M.; Cabrera, A.; Rementeria, R. Microstructural and neutron residual stress characteri-zation of 316L laser-powder bed fusion simplified end-use part: A modelling benchmark. Mater. Des. 2024, 237, 112526. [Google Scholar] [CrossRef]
- Rezayat, M.; Karamimoghadam, M.; Moradi, M.; Casalino, G.; Roa Rovira, J.J.; Mateo, A. Overview of Surface Modification Strategies for Improving the Properties of Metastable Austenitic Stainless Steels. Metals 2023, 13, 1268. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Brodusch, N.; Tu, G. Mitigating cracking in laser powder bed fusion of Ti-48Al-2Cr-2Nb via introducing massive β phase. Mater. Charact. 2023, 196, 112558. [Google Scholar] [CrossRef]
- Wang, M.; Du, Y.; Wei, H.; Liao, W. From crack-prone to crack-free: Eliminating cracks in additively manufactured Ti-48Al-2Cr-2Nb alloy by adjusting phase composition. Mater. Des. 2023, 231, 112025. [Google Scholar] [CrossRef]
- Yim, S.; Aoyagi, K.; Bian, H.; Yanagihara, K.; Lei, Y.; Kitamura, S.-I.; Manabe, H.; Daino, Y.; Yamanaka, K.; Chiba, A. Cracking behavior of Ti-48Al-2Cr-2Nb alloy in powder bed fusion electron beam melting process. J. Mater. Process. Technol. 2023, 320, 118104. [Google Scholar] [CrossRef]
- Gao, P.; Huang, W.; Yang, H.; Jing, G.; Liu, Q.; Wang, G.; Wang, Z.; Zeng, X. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5 Y alloy produced by selective laser melting. J. Mater. Sci. Technol. 2020, 39, 144–154. [Google Scholar] [CrossRef]
- Polozov, I.; Kantyukov, A.; Popovich, V.; Zhu, J.N.; Popovich, A. Microstructure and mechanical properties of tial-based alloy produced by selective laser melting. In Proceedings of the 29th International Conference on Metallurgy and Materials, Brno, Czech Republic, 20–22 May 2020; TANGER Ltd.: Ostrava, Czech Republic, 2020. [Google Scholar]
- Polozov, I.; Kantyukov, A.; Popovich, A.; Popovich, V. Tailoring Microstructure of Selective Laser Melted TiAl-Alloy with In-Situ Heat Treatment via Multiple Laser Exposure. In TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings; Springer: Cham, Switzerland, 2021; pp. 197–204. [Google Scholar]
- Caprio, L.; Demir, A.G.; Chiari, G.; Previtali, B. Defect-free laser powder bed fusion of Ti–48Al–2Cr–2Nb with a high temperature inductive preheating system. J. Phys. Photonics 2020, 2, 024001. [Google Scholar] [CrossRef]
- Zhuo, Z.; Fang, Z.; Ma, C.; Xie, Z.; Peng, X.; Wang, Q.; Miao, X.; Wu, M. Influence of LaB6 inoculant on the thermodynamics within the molten pool and subsequent microstructure development and cracking behavior of laser powder bed fused TiAl-based alloys. J. Mater. Res. Technol. 2023, 27, 2363–2381. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, M.; Aughterson, R.; Wei, T.; Lumpkin, G.; Ma, Y.; Li, H. Atomic origins of radiation-induced defects and the role of lamellar interfaces in radiation damage of titanium aluminide alloy irradiated with Kr-ions at elevated temperature. Acta Mater. 2019, 172, 72–83. [Google Scholar] [CrossRef]
- Han, X.; Liu, P.; Sun, D.; Wang, Q. An atomic-level understanding of the friction and wear behaviors of Ti2AlN/TiAl composite via MD simulations. Tribol. Int. 2019, 137, 340–348. [Google Scholar] [CrossRef]
- Arifin, R.; Astuti, F.; Baqiya, M.A.; Winardi, Y.; Wicaksono, Y.A.; Darminto; Selamat, A. Structural Change of TiAl Alloy under Uniaxial Tension and Compression in the <001> Direction: A Molecular Dynamics Study. Metals 2021, 11, 1760. [Google Scholar]
- Cao, H.; Yu, Z.; Zhou, B.; Li, H.; Guo, Z.; Wang, J.; Yang, W.; Feng, R. Molecular dynamics simulation of the effect of supersonic fine particle bombardment on the mechanical behaviour of γ-TiAl alloy: The effect of grain size. Vacuum 2023, 217, 112498. [Google Scholar] [CrossRef]
- Guo, J.; Ji, P.; Jiang, L.; Lin, G.; Meng, Y. Femtosecond laser sintering Al nanoparticles: A multiscale investigation of combined molecular dynamics simulation and two-temperature model. Powder Technol. 2022, 407, 117682. [Google Scholar] [CrossRef]
- Zope, R.R.; Mishin, Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 2003, 68, 024102. [Google Scholar] [CrossRef]
- Moradi-Ganjeh, M.; Farzadi, A.; Ramazani, A. Atomic scale melting/solidification behavior and structural evolutions of AlCoCrFeNi high-entropy alloy in selective laser melting process. J. Mater. Res. Technol. 2023, 27, 6811–6821. [Google Scholar] [CrossRef]
- Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Liang, C.; Yin, Y.; Wang, W.; Yi, M. A thermodynamically consistent non-isothermal phase-field model for selective laser sintering. Int. J. Mech. Sci. 2023, 259, 108602. [Google Scholar] [CrossRef]
- Guillemot, G.; Senninger, O.; Hareland, C.A.; Voorhees, P.W.; Gandin, C.A. Thermodynamic coupling in the computation of dendrite growth kinetics for multicomponent alloys. Calphad 2022, 77, 102429. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, J.; Zhang, L.; Tsutsumi, S.; Feng, J.; Ma, N. Impacts of laser cladding residual stress and material properties of functionally graded layers on titanium alloy sheet. Addit. Manuf. 2020, 35, 101303. [Google Scholar] [CrossRef]
- Sharma, S.; Krishna, K.V.M.; Joshi, S.S.; Radhakrishnan, M.; Palaniappan, S.; Dussa, S.; Banerjee, R.; Dahotre, N.B. Laser based additive manufacturing of tungsten: Multi-scale thermo-kinetic and thermo-mechanical computational model and experiments. Acta Mater. 2023, 259, 119244. [Google Scholar] [CrossRef]
- Jamil, I.R.; Mustaquim, A.M.; Islam, M.; Hasan, M.N. Molecular dynamics perspective of the effects of laser thermal configurations on the dislocation and mechanical characteristics of FeNiCrCoCu HEA through powder bed fusion process. Mater. Today Commun. 2022, 33, 104998. [Google Scholar] [CrossRef]
- Kumar, S.; Nandi, S.; Pattanayek, S.K.; Madan, M.; Kaushik, B.; Kumar, R.; Krishna, K.G. Atomistic characterization of multi nano-crystal formation process in Fe–Cr–Ni alloy during directional solidification: Perspective to the additive manufacturing. Mater. Chem. Phys. 2023, 308, 128242. [Google Scholar]
- Farias, M.; Hu, H.; Zhang, S.; Li, J.; Xu, B. A molecular dynamics study of atomic diffusion effects on thermomechanical properties applying laser additive alloying process for the Cantor high entropy alloy. J. Manuf. Process. 2023, 91, 149–166. [Google Scholar]
- Jamil, I.R.; Mustaquim, A.M.; Islam, M.; Thakur, M.S.H.; Hasan, M.N. Effect of powder bed fusion process parameters on microstructural and mechanical properties of FeCrNi MEA: An atomistic study. Met. Mater. Int. 2023, 29, 659–673. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Liu, Y.; Zhang, L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single-and multi-track melt pools for process optimization. Adv. Powder Mater. 2023, 2, 100137. [Google Scholar]
Parameter | Quantity |
---|---|
Radius of each nanoparticle | 2.6 nm |
Elements in each nanoparticle | Ti:2567 |
Al:2611 | |
Dimensions of the substrate | 22.80 × 31.01 × 2.00 nm3 |
Atoms in the substrate | 96,600 |
Total atoms | 200,160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, B.; Wang, Q.; Ma, C.; Han, L.; Wei, W.; Li, X. Atomic-Scale Dislocation Structure Evolution and Crystal Ordering Analysis of Melting and Crystallization Microprocesses in Laser Powder Bed Melting of γ-TiAl Alloys. Metals 2024, 14, 237. https://doi.org/10.3390/met14020237
Gu B, Wang Q, Ma C, Han L, Wei W, Li X. Atomic-Scale Dislocation Structure Evolution and Crystal Ordering Analysis of Melting and Crystallization Microprocesses in Laser Powder Bed Melting of γ-TiAl Alloys. Metals. 2024; 14(2):237. https://doi.org/10.3390/met14020237
Chicago/Turabian StyleGu, Bangjie, Quanlong Wang, Chenglong Ma, Lei Han, Wentao Wei, and Xiao Li. 2024. "Atomic-Scale Dislocation Structure Evolution and Crystal Ordering Analysis of Melting and Crystallization Microprocesses in Laser Powder Bed Melting of γ-TiAl Alloys" Metals 14, no. 2: 237. https://doi.org/10.3390/met14020237
APA StyleGu, B., Wang, Q., Ma, C., Han, L., Wei, W., & Li, X. (2024). Atomic-Scale Dislocation Structure Evolution and Crystal Ordering Analysis of Melting and Crystallization Microprocesses in Laser Powder Bed Melting of γ-TiAl Alloys. Metals, 14(2), 237. https://doi.org/10.3390/met14020237