Laser Surface Transformation Hardening for Automotive Metals: Recent Progress
Abstract
:1. Introduction
2. Applications LSTH in the Automotive Industry
3. Laser Hardening Characterization
3.1. Microstructural Characterization
3.1.1. Carbon Steels
3.1.2. Alloyed Steels
3.1.3. Tool Steels
3.1.4. Stainless Steels
3.1.5. Cast Irons
3.1.6. Aluminum
3.2. Mechanical Characterization
3.2.1. Microhardness
3.2.2. Wear Behavior
3.2.3. Corrosion Resistance
3.2.4. Fatigue Behavior
3.2.5. Residual Stresses and Micro-Cracks
4. Simulation and Optimization
4.1. Simulation
4.2. Optimization
5. Future Prospective of LSTH for Industrial Sectors
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sghaier, T.A.; Sahlaoui, H.; Mabrouki, T.; Sallem, H.; Rech, J. Selective laser melting of stainless-steel: A review of process, microstructure, mechanical properties and post-processing treatments. Int. J. Mater. Form. 2023, 16, 41. [Google Scholar] [CrossRef]
- Steen, W.M. Laser material processing—An overview. J. Opt. A Pure Appl. Opt. 2003, 5, S3–S7. [Google Scholar] [CrossRef]
- Sohail, M.T.; Wang, M.; Shareef, M.; Yan, P. A Review of Ultrafast Photonics Enabled by Metal-Based Nanomaterials: Fabrication, Integration, Applications and Future Perspective. Infrared Phys. Technol. 2024, 137, 105127. [Google Scholar] [CrossRef]
- Sadaf, M.; Bragaglia, M.; Perše, L.S.; Nanni, F. Advancements in Metal Additive Manufacturing: A Comprehensive Review of Material Extrusion with Highly Filled Polymers. J. Manuf. Mater. Process. 2024, 8, 14. [Google Scholar] [CrossRef]
- Mishra, Y.K.; Gupta, S.K.; Mishra, S.; Singh, D.P. Laser beam drilling of fiber reinforced composites using Nd: YAG and CO2 Laser: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Legall, H.; Bonse, J.; Krüger, J. Review of X-ray exposure and safety issues arising from ultra-short pulse laser material processing. J. Radiol. Prot. 2021, 26, 41. [Google Scholar] [CrossRef]
- Lupone, F.; Padovano, E.; Casamento, F.; Badini, C. Process phenomena and material properties in selective laser sintering of polymers: A Review. Materials 2021, 15, 183. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Casalino, G.; Giorleo, L.; Capello, E.; Segui, V.J. Post Treatment Laser Irradiation for Recovery of Deformation Induced by Surface Laser Hardening. In Proceedings of the Third Manufacturing Engineering Society International Conference: MESIC-09, Alcoy, Spain, 17–19 June 2009. [Google Scholar]
- Kennedy, E.; Byrne, G.; Collins, D.N. A review of the use of high power diode lasers in surface hardening. J. Mater. Process. Technol. 2004, 155–156, 1855–1860. [Google Scholar] [CrossRef]
- Tan, C.Y.; Wen, C.; Ang, H.Q. Influence of laser parameters on the microstructures and surface properties in laser surface modification of biomedical magnesium alloys. J. Magnes. Alloy 2024, 12, 72–97. [Google Scholar] [CrossRef]
- Tan, C.; Weng, F.; Sui, S.; Chew, Y.; Bi, G. Progress and perspectives in laser additive manufacturing of key aeroengine materials. Int. J. Mach. Tools Manuf. 2021, 170, 103804. [Google Scholar] [CrossRef]
- Homberg, D.; Weiss, W. PID control of laser surface hardening of steel. IEEE Trans. Control Syst. Technol. 2006, 14, 896–904. [Google Scholar] [CrossRef]
- Lasota, I.; Protsenko, V.; Matyushkin, A.; Kuznetsov, M.; Gook, S. Laser surface hardening of engine camshaft cams. Mater. Today Proc. 2020, 30, 478–482. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Q.; Zhang, P.; Yan, H.; Shi, H.; Sun, T.; Zhou, K.; Chen, K. A review on the simulation of selective laser melting AlSi10Mg. Opt. Laser Technol. 2024, 174, 110500. [Google Scholar] [CrossRef]
- Solina, A.; De Sanctis, M.; Paganini, L.; Blarasin, A.; Quaranta, S. Origin and development of residual stresses induced by laser surface-hardening treatments. J. Heat Treat. 1984, 3, 193–204. [Google Scholar] [CrossRef]
- Shin, H.J.; Yoo, Y.; Ahn, D.G.; Im, K. Laser surface hardening of S45C medium carbon steel using ND:YAG laser with a continuous wave. J. Mater. Process. Technol. 2007, 187–188, 467–470. [Google Scholar] [CrossRef]
- Tani, G.; Fortunato, A.; Ascari, A.; Campana, G. Laser surface hardening of martensitic stainless steel hollow parts. CIRP Ann. 2010, 59, 207–210. [Google Scholar] [CrossRef]
- Lv, Y.; Cui, B.; Sun, Z. Investigation on wear behavior for SUS420 steel gear based on discrete laser surface melting. Opt. Laser Technol. 2024, 170, 110251. [Google Scholar] [CrossRef]
- Schneider, M.J.; Chatterjee, M.S. Introduction to Surface Hardening of Steels. In Steel Heat Treating Fundamentals and Processes; ASM International: Almere, The Netherlands, 2013; pp. 389–398. [Google Scholar]
- Manco, E.; Cozzolino, E.; Astarita, A. Laser polishing of additively manufactured metal parts: A review. Surf. Eng. 2022, 38, 217–233. [Google Scholar] [CrossRef]
- Majumdar, J.D.; Kumar, A.; Pityana, S.; Manna, I. Laser Surface Melting of AISI 316L Stainless Steel for Bio-implant Application. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2018, 88, 387–403. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Yang, C.H.; Raj Kumar, D. Laser Surface Modification of Materials. In Practical Applications of Laser Ablation; IntechOpen: London, UK, 2021. [Google Scholar]
- Shariff, S.M.; Tak, M.; Padmanabham, G.; Shanmugam, S. Laser Surface Hardening of Crankshaft. In Proceedings of the International Mobility Engineering Congress and Exposition, Chennai, India, 13–15 December 2009. [Google Scholar]
- Claus, G. Transformation hardening with high power diode laser systems using single and multiple tracks. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics, Orlando, FL, USA, 14–18 October 2018; Volume 2004, p. 1203. [Google Scholar]
- Sidashov, A.V.; Kozakov, A.T.; Yares’Ko, S.; Kakovkina, N.G.; Manturov, D.S. Study of the phase composition and tribological properties of carbon tool steels after laser surface hardening by quasi—CW fiber laser. Surf. Coat. Technol. 2020, 385, 125427. [Google Scholar] [CrossRef]
- Moradi, M.; KaramiMoghadam, M. High power diode laser surface hardening of AISI 4130; statistical modelling and optimization. Opt. Laser Technol. 2019, 111, 554–570. [Google Scholar] [CrossRef]
- Fang, X.; Gong, J.; Yu, Y.; Yu, S.; Zhou, L.; Zhang, Z.; Cai, Z. Study on the fretting wear performance and mechanism of GH4169 superalloy after various laser shock peening treatments. Opt. Laser Technol. 2024, 170, 110301. [Google Scholar] [CrossRef]
- Rajesh, P.; Muraleedharan, C.V.; Komath, M.; Varma, H. Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite. J. Mater. Sci. Mater. Med. 2011, 22, 1671–1679. [Google Scholar] [CrossRef]
- Rezayat, M.; Karamimoghadam, M.; Moradi, M.; Casalino, G.; Rovira, J.J.R.; Mateo, A. Overview of Surface Modification Strategies for Improving the Properties of Metastable Austenitic Stainless Steels. Metals 2023, 13, 1268. [Google Scholar] [CrossRef]
- Ghate, N.D.; Shrivastava, A. Laser processing of multiple surface characteristics for Ti6Al4V biomedical implants. Mater. Manuf. Process. 2020, 36, 308–315. [Google Scholar] [CrossRef]
- Yang, Y.S.; Na, S.J. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment. J. Heat Treat. 1991, 9, 49–56. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, J.; Chen, M. A review on surface texturing of zirconia ceramics for dental applications. Int. J. Adv. Manuf. Technol. 2024, 130, 5109–5135. [Google Scholar] [CrossRef]
- Li, W.; Yao, Y.L. Laser forming with constant line energy. Int. J. Adv. Manuf. Technol. 2001, 17, 196–203. [Google Scholar] [CrossRef]
- Edwardson, S.P.; Abed, E.; Bartkowiak, K.; Dearden, G.; Watkins, K.G. Geometrical influences on multi-pass laser forming. J. Phys. D Appl. Phys. 2006, 39, 382–389. [Google Scholar] [CrossRef]
- Cheng, J.; Yao, Y.L. Cooling Effects in Multiscan Laser Forming. J. Manuf. Process. 2001, 3, 60–72. [Google Scholar] [CrossRef]
- Watkins, K.G.; Edwardson, S.P.; Magee, J.; Dearden, G.; French, P.; Cooke, R.L.; Sidhu, J.; Calder, N.J. Laser Forming of Aerospace Alloys; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2001. [Google Scholar] [CrossRef]
- Hennige, T. Development of irradiation strategies for 3D-laser forming. J. Mater. Process. Technol. 2000, 103, 102–108. [Google Scholar] [CrossRef]
- Lücke, H.U.; Hartl, C.; Abbey, T. Laser forming of aluminium and aluminium alloys—Microstructural investigation. J. Mater. Process. Technol. 2001, 115, 159–165. [Google Scholar]
- Laoui, T.; Santos, E.; Osakada, K.; Shiomi, M.; Morita, M.; Shaik, S.K.; Tolochko, N.K.; Abe, F.; Takahashi, M. Properties of Titanium Dental Implant Models Made by Laser Processing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2006, 220, 857–863. [Google Scholar] [CrossRef]
- Griepentrog, M.; Haustein, I.; Briedigkeit, H.; Göbel, U.B.; Größner-Schreiber, B.; Müller, W.D.; Lange, K.P. Plaque formation on surface modified dental implants. Clin. Oral Implant. Res. 2001, 12, 543–551. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dhara, S.; Saha, P. Laser surface remelting of Ti and its alloys for improving surface biocompatibility of orthopaedic implants. Mater. Technol. 2017, 33, 106–118. [Google Scholar] [CrossRef]
- Popoola, A.P.I.; Fatoba, O.S.; Nkosi, H.W.; Aigbodion, V.S. Surface Hardening of Aluminium by Laser alloying with Molybdenum and Zirconium powder. Int. J. Electrochem. Sci. 2016, 11, 126–139. [Google Scholar] [CrossRef]
- Dubourg, L.; Pelletier, H.; Vaissiere, D.; Hlawka, F.; Cornet, A. Mechanical characterisation of laser surface alloyed aluminium–copper systems. Wear 2002, 253, 1077–1085. [Google Scholar] [CrossRef]
- Luo, S.; Nie, X.; Zhou, L.; You, X.; He, W.; Li, Y. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy. Surf. Coat. Technol. 2017, 311, 337–343. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Lu, Q.; Yan, H.; Shi, H.; Yu, Z.; Sun, T.; Li, R.; Wang, Q.; Wu, Y.; et al. Application and development of blue and green laser in industrial manufacturing: A review. Opt. Laser Technol. 2024, 170, 110202. [Google Scholar] [CrossRef]
- Shin, H.J.; Yoo, Y.T. Microstructural and hardness investigation of hot-work tool steels by laser surface treatment. J. Mater. Process. Technol. 2008, 201, 342–347. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, S.; Wang, P.; Qiu, W.; Zhang, G. Progress in applications of laser induced cavitation on surface processing. Opt. Laser Technol. 2024, 170, 110212. [Google Scholar] [CrossRef]
- Hu, X.; Qu, S.; Chen, Z.; Zhang, P.; Lu, Z.; Lai, F.; Duan, C.; Li, X. Rolling contact fatigue behaviors of 25CrNi2MoV steel combined treated by discrete laser surface hardening and ultrasonic surface rolling. Opt. Laser Technol. 2022, 155, 108370. [Google Scholar] [CrossRef]
- Babu, P.D.; Balasubramanian, K.R.; Buvanashekaran, G. Laser surface hardening: A review. Int. J. Surf. Sci. Eng. 2011, 5, 131. [Google Scholar] [CrossRef]
- Bukhari, S.M.A.; Husnain, N.; Siddiqui, F.A.; Anwar, M.T.; Khosa, A.A.; Imran, M.; Qureshi, T.H.; Ahmad, R. Effect of laser surface remelting on Microstructure, mechanical properties and tribological properties of metals and alloys: A review. Opt. Laser Technol. 2023, 165, 109588. [Google Scholar] [CrossRef]
- Jegadheesan, C.; Somasundaram, P.; Kumar, P.; Singh, A.P.; Jeyaprakash, N. State of art: Review on laser surface hardening of alloy metals. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Pantsar, H. Relationship between processing parameters, alloy atom diffusion distance and surface hardness in laser hardening of tool steel. J. Mater. Process. Technol. 2007, 189, 435–440. [Google Scholar] [CrossRef]
- Orazi, L.; Liverani, E.; Ascari, A.; Fortunato, A.; Tomesani, L. Laser surface hardening of large cylindrical components utilizing ring spot geometry. CIRP Ann. 2014, 63, 233–236. [Google Scholar] [CrossRef]
- Dutta Majumdar, J.; Manna, I. Laser material processing. Int. Mater. Rev. 2011, 56, 341–388. [Google Scholar] [CrossRef]
- Selvan, J.S.; Subramanian, K.; Nath, A.K. Effect of laser surface hardening on En18 (AISI 5135) steel. J. Mater. Process. Technol. 1999, 91, 29–36. [Google Scholar] [CrossRef]
- Mioković, T.; Schulze, V.; Vöhringer, O.; Löhe, D. Prediction of phase transformations during laser surface hardening of AISI 4140 including the effects of inhomogeneous austenite formation. Mater. Sci. Eng. A 2006, 435–436, 547–555. [Google Scholar] [CrossRef]
- Adebiyi, D.I.; Popoola, A.P.I. Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying. Mater Des. 2015, 74, 67–75. [Google Scholar] [CrossRef]
- Abbas, G.; Li, L.; Ghazanfar, U.; Liu, Z. Effect of high power diode laser surface melting on wear resistance of magnesium alloys. Wear 2006, 260, 175–180. [Google Scholar] [CrossRef]
- Dinesh, B.; Marimuthu, P. Status of laser transformation hardening of steel and its alloys: A review. Emerg. Mater. Res. 2019, 8, 188–205. [Google Scholar] [CrossRef]
- Lesyk, D.A.; Martinez, S.; Mordyuk, B.; Dzhemelinskyi, V.; Lamikiz, A.; Prokopenko, G. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045. Opt. Laser Technol. 2019, 111, 424–438. [Google Scholar] [CrossRef]
- Sibillano, T.; Rizzi, D.; Ancona, A.; Saludes-Rodil, S.; Nieto, J.R.; Chmelíčková, H.; Šebestová, H. Spectroscopic monitoring of penetration depth in CO2 Nd:YAG and fiber laser welding processes. J. Mater. Process. Technol. 2012, 212, 910–916. [Google Scholar] [CrossRef]
- Maharjan, N.; Zhou, W.; Zhou, Y.; Guan, Y.; Wu, N. Comparative study of laser surface hardening of 50CrMo4 steel using continuous-wave laser and pulsed lasers with ms, ns, ps and fs pulse duration. Surf. Coat. Technol. 2019, 366, 311–320. [Google Scholar] [CrossRef]
- Kostov, V.; Gibmeier, J.; Wanner, A. Local Residual Stress Distributions Induced by Repeated Austenite-Martensite Transformation via Laser Surface Hardening of Steel AISI 4140. Mater. Sci. Forum 2011, 681, 321–326. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, J.H.; Joo, B.D.; Son, Y.M.; Moon, Y.H. Laser surface hardening of AISI H13 tool steel. Trans. Nonferrous Met. Soc. China 2009, 19, 917–920. [Google Scholar] [CrossRef]
- Chiang, K.-A.; Chen, Y.-C. Laser surface hardening of H13 steel in the melt case. Mater. Lett. 2005, 59, 1919–1923. [Google Scholar] [CrossRef]
- Shim, D.-S.; Baek, G.-Y.; Lee, S.-B.; Yu, J.-H.; Choi, Y.-S.; Park, S.-H. Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition. Surf. Coat. Technol. 2017, 328, 219–230. [Google Scholar] [CrossRef]
- Telasang, G.; Majumdar, J.D.; Padmanabham, G.; Manna, I. Structure–property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties. Mater. Sci. Eng. A 2014, 599, 255–267. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Torkamany, M.J.; Aghdam, A.R.S.; Sabbaghzadeh, J. Effect of laser surface hardening on the hydrogen embrittlement of AISI 420: Martensitic stainless steel. Mater. Des. 2011, 32, 2621–2627. [Google Scholar] [CrossRef]
- Park, H.; Yoo, H.J.; Park, C. Wear and corrosion behaviors of high-power laser surface-cleaned 304L stainless steel. Opt. Laser Technol. 2024, 168, 109640. [Google Scholar] [CrossRef]
- Moradi, M.; Ghorbani, D.; Moghadam, M.K.; Kazazi, M.; Rouzbahani, F.; Karazi, S. Nd:YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior. J. Alloys Compd. 2019, 795, 213–222. [Google Scholar] [CrossRef]
- Jakob, S.; Hörnqvist Colliander, M.; Kawser, J.; Rashidi, S.; Ooi, S.W.; Thuvander, M. Concomitant Precipitation of Intermetallic β-NiAl and Carbides in a Precipitation Hardened Steel. Metall. Mater. Trans. A 2024, 55, 870–879. [Google Scholar] [CrossRef]
- Moradi, M.; Sharif, S.; Nasab, S.J.; Moghadam, M.K. Laser surface hardening of AISI 420 steel: Parametric evaluation, statistical modeling and optimization. Optik 2020, 224, 165666. [Google Scholar] [CrossRef]
- Katiyar, J.K.; Rani, A.M.A.; Sulaiman, M.H.; Barman, U.; Masset, P.J.; Rao, T.V.V.L.N. Recent Advances of Tribology in Sustainable Manufacturing. In Tribology in Sustainable Manufacturing; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–28. [Google Scholar]
- Fernández-Vicente, A.; Pellizzari, M.; Arias, J. Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls. J. Mater. Process. Technol. 2012, 212, 989–1002. [Google Scholar] [CrossRef]
- Fribourg, G.; Deschamps, A.; Bréchet, Y.; Mylonas, G.; Labeas, G.; Heckenberger, U.; Perez, M. Microstructure modifications induced by a laser surface treatment in an AA7449 aluminium alloy. Mater. Sci. Eng. A 2011, 528, 2736–2747. [Google Scholar] [CrossRef]
- Trdan, U.; Ocaña, J.L.; Grum, J. Surface modification of aluminium alloys with laser shock processing. Stroj. Vestn.-J. Mech. Eng. 2011, 57, 385–393. [Google Scholar]
- Rogachev, S.O.; Naumova, E.A.; Komissarov, A.A.; Vasina, M.A.; Pavlov, M.D.; Tokar’, A.A. Effect of Laser Surface Modification on the Structure and Mechanical Properties of Al–8% Ca, Al–10% La, Al–10% Ce, and Al–6% Ni Eutectic Aluminum Alloys. Russ. J. Non-Ferr. Met. 2022, 63, 671–680. [Google Scholar] [CrossRef]
- Haley, J.; Karandikar, J.; Herberger, C.; MacDonald, E.; Feldhausen, T.; Lee, Y. Review of in situ process monitoring for metal hybrid directed energy deposition. J. Manuf. Process. 2024, 109, 128–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Jian, X.; Xia, F.; Shi, D.; Wu, L.; Liu, L.; Ji, V. Effect of laser shock peening on surface integrity and tensile fatigue behavior of TB8 bolts. Eng. Fail. Anal. 2024, 157, 107968. [Google Scholar] [CrossRef]
- Moradi, M.; Moghadam, M.K.; Shamsborhan, M. How the laser beam energy distribution effect on laser surface transformation hardening process; Diode and Nd:YAG lasers. Optik 2020, 204, 163991. [Google Scholar] [CrossRef]
- Chandrasekar, P.; Balusamy, V.; Chandran, K.S.R.; Kumar, H. Laser surface hardening of titanium–titanium boride (Ti–TiB) metal matrix composite. Scr. Mater. 2007, 56, 641–644. [Google Scholar] [CrossRef]
- He, Y.; Gu, Z.; Ji, J.; Zhang, T.; Fu, Y. How to improve surface integrity in discrete laser spot hardening of AISI 4140 when using a fiber laser with the Gaussian beam: A dynamic multi-pass approach based on time-domain energy modulation. Opt. Laser Technol. 2024, 170, 110322. [Google Scholar] [CrossRef]
- Pantelis, D.I.; Bouyiouri, E.; Kouloumbi, N.; Vassiliou, P.; Koutsomichalis, A. Wear and corrosion resistance of laser surface hardened structural steel. Surf. Coat. Technol. 2002, 161, 125–134. [Google Scholar] [CrossRef]
- Khalfallah, I.Y.; Rahoma, M.N.; Abboud, J.H.; Benyounis, K.Y. Microstructure and corrosion behavior of austenitic stainless steel treated with laser. Opt. Laser Technol. 2011, 43, 806–813. [Google Scholar] [CrossRef]
- Conde, A.; Colaço, R.; Vilar, R.; De Damborenea, J. Corrosion behaviour of steels after laser surface melting. Mater. Des. 2000, 21, 441–445. [Google Scholar] [CrossRef]
- Germann, H.; Starke, P.; Kerscher, E.; Eifler, D. Fatigue behaviour and lifetime calculation of the cast irons EN-GJL-250, EN-GJS-600 and EN-GJV-400. Procedia Eng. 2010, 2, 1087–1094. [Google Scholar] [CrossRef]
- Liverani, E.; Lutey, A.H.A.; Ascari, A.; Fortunato, A.; Tomesani, L. A complete residual stress model for laser surface hardening of complex medium carbon steel components. Surf. Coat. Technol. 2016, 302, 100–106. [Google Scholar] [CrossRef]
- Soria-Biurrun, T.; Dorronsoro-Larbide, A.; Navarrete-Cuadrado, J.; Lozada-Cabezas, L.; Pan-Cabo, A.; Castaño-Carmona, E.; Alkorta, J.; Sánchez-Moreno, J.M. Surface texturing, residual stresses and edge treatment of hardmetal tools by means of femtosecond pulsed laser. Int. J. Refract. Met. Hard Mater. 2024, 118, 106442. [Google Scholar] [CrossRef]
- Teng, C.; Pal, D.; Gong, H.; Zeng, K.; Briggs, K.; Patil, N.; Stucker, B. A review of defect modeling in laser material processing. Addit. Manuf. 2017, 14, 137–147. [Google Scholar] [CrossRef]
- Hurtado-Delgado, E.; Huerta-Larumbe, L.; Miranda-Pérez, A.; Aguirre-Sánchez, Á. Microcracks Reduction in Laser Hardened Layers of Ductile Iron. Coatings 2021, 11, 368. [Google Scholar] [CrossRef]
- Akhter, R.; Hussain, A.; Farooq, W.A.; Aslam, M. Laser Surface Hardening of GCr15 Bearing Steel Ring. Key Eng. Mater. 2010, 442, 130–136. [Google Scholar] [CrossRef]
- Orazi, L.; Fortunato, A.; Cuccolini, G.; Tani, G. An efficient model for laser surface hardening of hypo-eutectoid steels. Appl. Surf. Sci. 2010, 256, 1913–1919. [Google Scholar] [CrossRef]
- Yao, C.; Xu, B.; Huang, J.; Zhang, P.; Wu, Y. Study on the softening in overlapping zone by laser-overlapping scanning surface hardening for carbon and alloyed steel. Opt. Lasers Eng. 2010, 48, 20–26. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Torkamany, M.J.; Aghdam, A.R.S.R.; Sabbaghzade, J. Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser. Mater. Des. 2010, 31, 2553–2560. [Google Scholar] [CrossRef]
- Soriano, C.; Leunda, J.; Lambarri, J.; García Navas, V.; Sanz, C. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Appl. Surf. Sci. 2011, 257, 7101–7106. [Google Scholar] [CrossRef]
- Babu, P.D.; Buvanashekaran, G.; Balasubramanian, K.R. Experimental studies on the microstructure and hardness of laser transformation hardening of low alloy steel. Trans. Can. Soc. Mech. Eng. 2012, 36, 241–258. [Google Scholar] [CrossRef]
- Nath, A.K.; Gupta, A.; Benny, F. Theoretical and experimental study on laser surface hardening by repetitive laser pulses. Surf. Coat. Technol. 2012, 206, 2602–2615. [Google Scholar] [CrossRef]
- Zhang, P.L.; Yan, H.; Xu, P.Q.; Yu, Z.S.; Li, C.G.; Lu, Q.H. Effect of Laser Surface Hardening on the Microstructure, Hardness, Wear Resistance and Softening of a Low Carbon Steel. Lasers in Engineering; Old City Publishing: Philadelphia, PA, USA, 2014. [Google Scholar]
- Li, R.; Jin, Y.; Li, Z.; Qi, K. A Comparative Study of High-Power Diode Laser and CO2 Laser Surface Hardening of AISI 1045 Steel. J. Mater. Eng. Perform. 2014, 23, 3085–3091. [Google Scholar] [CrossRef]
- Telasang, G.; Majumdar, J.D.; Padmanabham, G.; Manna, I. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel. Surf. Coat. Technol. 2015, 261, 69–78. [Google Scholar] [CrossRef]
- Cordovilla, F.; García-Beltrán, Á.; Sancho, P.; Domínguez, J.; Ruiz-de-Lara, L.; Ocaña, J.L. Numerical/experimental analysis of the laser surface hardening with overlapped tracks to design the configuration of the process for Cr-Mo steels. Mater. Des. 2016, 102, 225–237. [Google Scholar] [CrossRef]
- Guarino, S.; Barletta, M.; Afilal, A. High Power Diode Laser (HPDL) surface hardening of low carbon steel: Fatigue life improvement analysis. J. Manuf. Process. 2017, 28, 266–271. [Google Scholar] [CrossRef]
- Dongre, G.; Rajurkar, A.; Gondil, R.; Jaju, N. Laser surface hardening of SS316L. IOP Conf. Series Mater. Sci. Eng. 2021, 1070, 012107. [Google Scholar] [CrossRef]
- Aprilia, A.; Maharjan, N.; Zhou, W. Decarburization in Laser Surface Hardening of AISI 420 Martensitic Stainless Steel. Materials 2023, 16, 939. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.C.; Ghetiya, N.D. 3D Multiphysics simulation of microwave heating of bulk metals with parametric variations. Chem. Eng. Process. Process Intensif. 2023, 184, 109271. [Google Scholar] [CrossRef]
- Machado, Y.D.; Germano, G.C.; Pecoraro, E.; Costa, A.M.L.; Carvalho, I.C. Impact of SiO2 nanoparticle morphology on scattering efficiency for random lasers. Opt. Mater. 2024, 148, 114775. [Google Scholar] [CrossRef]
- Hou, L.; Yin, F.; Wang, S.; Sun, J.; Yin, H. A review of thermal effects and substrate damage control in laser cleaning. Opt. Laser Technol. 2024, 174, 110613. [Google Scholar] [CrossRef]
- Tang, J.; Shi, Y.; Zhao, J.; Chen, L.; Wu, Z. Numerical modeling considering initial gradient mechanical properties and experiment verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by ultrasonic surface rolling. Surf. Coat. Technol. 2023, 452, 129127. [Google Scholar] [CrossRef]
- Casalino, G.; Moradi, M.; Moghadam, M.K.; Khorram, A.; Perulli, P. Experimental and Numerical Study of AISI 4130 Steel Surface Hardening by Pulsed Nd:YAG Laser. Materials 2019, 12, 3136. [Google Scholar] [CrossRef]
- Han, X.; Li, C.; Chen, X.; Jia, S. Numerical simulation and experimental study on the composite process of submerged arc cladding and laser cladding. Surf. Coat. Technol. 2022, 439, 128432. [Google Scholar] [CrossRef]
- Domański, T.; Sapietová, A.; Sága, M. Application of Abaqus Software for the Modeling of Surface Progressive Hardening. Procedia Eng. 2017, 177, 64–69. [Google Scholar] [CrossRef]
- Yaakoubi, M.; Kchaou, M.; Dammak, F. Simulation of the thermomechanical and metallurgical behavior of steels by using ABAQUS software. Comput. Mater. Sci. 2013, 68, 297–306. [Google Scholar] [CrossRef]
- Bailey, N.S.; Katinas, C.; Shin, Y.C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses. J. Mater. Process. Technol. 2017, 247, 223–233. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Liang, F.; Yang, B. Parameter optimization of laser die-surface hardening using the particle swarm optimization technique. Int. J. Adv. Manuf. Technol. 2008, 36, 1104–1112. [Google Scholar] [CrossRef]
- Meijer, J.; van Sprang, I. Optimization of Laser Beam Transformation Hardening by One Single Parameter. CIRP Ann. 1991, 40, 183–186. [Google Scholar] [CrossRef]
- Badkar, D.S.; Pandey, K.S.; Buvanashekaran, G. Parameter optimization of laser transformation hardening by using Taguchi method and utility concept. Int. J. Adv. Manuf. Technol. 2011, 52, 1067–1077. Available online: https://link.springer.com/article/10.1007/s00170-010-2787-z (accessed on 1 January 2020). [CrossRef]
- Chen, C.; Zeng, X.; Wang, Q.; Lian, G.; Huang, X.; Wang, Y. Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel. Opt. Laser Technol. 2020, 124, 105976. [Google Scholar] [CrossRef]
Laser Parameters | Laser Type | Material | Maximum Hardness | Ref. | Year |
---|---|---|---|---|---|
Laser power: 300 to 500 W focal length: 280 mm | CO2 laser | GCr15 | 900 Hv | [92] | 2010 |
Laser power: 1.2 kW Laser speed: 300 mm/min | 3 kW CO2 | AISI 1045 | 700 Hv | [93] | 2010 |
Laser power: 4 kW Distance of focus point: 80 mm Spot size: 5.5 mm | 15 kW CO2 | 9Cr2Mo steel W18Cr4V steel | 1100 Hv | [94] | 2010 |
Laser power: 300 W Frequency: 15 Hz Pulse width: 18 ms Laser speed: 2–8 mm/s | 400 W Nd:YAG laser | AISI 420 | 490 Hv | [95] | 2010 |
Rotation speed: 3.4 rpm The focal point: 19.9 mm × 3.3 mm | 2.2 kW Nd:YAG | EN-GJS-1000-5 EN-GJS-800-8 | 800 Hv | [96] | 2011 |
Laser power: 750–1250 W Travel speed:500–1000 mm/min | Nd:YAG | EN25 | 820 Hv | [97] | 2012 |
Laser speed: 1–9 m/min Laser power: 600–1165 W | 2 kW fiber laser | AISI 1055 | 1100 Hv | [98] | 2012 |
Laser speed: 3 m/min Diameter of Laser beam: 5 mm Gas Flow Rate (Ar) (l/min): 25 Laser power: 4–5 kW | 15 kW CO2 laser | 9Cr2Mo steel | 400 Hv | [99] | 2014 |
Power density: 2.92 × 104 W/cm2 Travel speed: 1.5–3 m/min | Diode Laser and CO2 Laser | AISI 1045 | 600 Hv | [100] | 2014 |
Rectangular nozzle: 20 mm × 4 mm Laser speed: 4 mm/s Laser power:1250 W and 2000 W | 6 kW continuous wave diode laser | AISI H13 tool steel | 810 Hv | [101] | 2015 |
Power: 1800 W Traversing speed: 250 mm/min Beam diameter: 16 mm Peak Irradiance: 2980 W/cm2 | Nd:YAG | AISI 4140 | 800 Hv | [102] | 2016 |
Laser power: 100–300 W Laser speed: 12–20 mm/s | 1500 Diode Laser | AISI 1040 | 300 Hv | [103] | 2017 |
Laser Speed: 3–7 mm/s Laser Power: 1200–1600 W Focal plane position: 60–80 mm | 1600 W Diode laser | AISI 4130 | 800 Hv | [27] | 2019 |
Laser Power: 6–15 W Scanning Speed: 100–500 mm/s Frequency: 30–75 kHz No of passes: 1–7 | Diode laser | AISI 316L | 210 Hv | [104] | 2021 |
Laser power: 480 W Laser speed: 20 mm/s Energy density: 10.19 J/mm2 | Diode laser | AISI 420 | 675 Hv | [105] | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamimoghadam, M.; Rezayat, M.; Moradi, M.; Mateo, A.; Casalino, G. Laser Surface Transformation Hardening for Automotive Metals: Recent Progress. Metals 2024, 14, 339. https://doi.org/10.3390/met14030339
Karamimoghadam M, Rezayat M, Moradi M, Mateo A, Casalino G. Laser Surface Transformation Hardening for Automotive Metals: Recent Progress. Metals. 2024; 14(3):339. https://doi.org/10.3390/met14030339
Chicago/Turabian StyleKaramimoghadam, Mojtaba, Mohammad Rezayat, Mahmoud Moradi, Antonio Mateo, and Giuseppe Casalino. 2024. "Laser Surface Transformation Hardening for Automotive Metals: Recent Progress" Metals 14, no. 3: 339. https://doi.org/10.3390/met14030339
APA StyleKaramimoghadam, M., Rezayat, M., Moradi, M., Mateo, A., & Casalino, G. (2024). Laser Surface Transformation Hardening for Automotive Metals: Recent Progress. Metals, 14(3), 339. https://doi.org/10.3390/met14030339