Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys
Abstract
:1. Introduction
2. Heat Transport in Aluminum Alloys
3. Die-Cast Aluminum Alloys for Thermal Conductivity
3.1. Al–Si Alloys
3.1.1. Reducing the Content of Major Elements
3.1.2. Reducing the Solute Concentration of Trace Elements in Solid Solutions
3.1.3. Modification of Eutectic Particles
3.2. Silicon-Free Aluminum Alloys
3.2.1. Al–Ni Alloys
3.2.2. Al–Fe(–Ni) Alloys
4. Effect of Die-Cast Processing on Thermal Conductivity in Die-Cast Aluminum Alloys
4.1. Processing Parameters of High-Pressure Die Casting
4.2. Rheological High-Pressure Die Casting
5. Heat Treatment for Die-Cast Aluminum Alloys
- (1)
- Decreasing the number of defects like dislocations and point defects at elevated temperatures [142];
- (2)
- Promoting the spheroidization of eutectic Si at elevated temperatures [143];
- (3)
- Promoting precipitations like Mg2Si from the solid solutions during the aging process [144];
- (4)
- Controlling the interfacial structure to be semi-coherent or incoherent during the aging process [145].
6. Models of Thermal Conductivity for Die-Cast Aluminum Alloys
7. Conclusions and Perspectives
- (1)
- In aluminum alloys, the thermal conductivity can be divided into electrical thermal conductivity and phonon thermal conductivity. The former is dominant in aluminum alloys. As a whole, the fundamental theory of the electrical heat conduction in aluminum alloys is abundant. For the phonon thermal conductivity, the relationship between the phonon thermal conductivity and temperature is clear. However, deep studies about the relationship between the phonon thermal conductivity and alloy compositions in aluminum alloys are lacking and can be performed further.
- (2)
- For alloy development, the Al–Si system is still the main system of die-cast alloys used for heat dissipation components. Reducing the major elements and adding trace elements to optimize the microstructure through decreasing solute concentrations in the substrate and modifying eutectic particles are the main methods used to improve thermal conductivity of alloys. In order to obtain higher thermal conductivity, a series of die-cast Al alloys only containing Fe or Ni are developed. However, more studies on the relationship between thermal conductivity and microstructure under the die-cast condition are needed. In addition, the mechanical properties of the alloys need to be improved for applications while ensuring high thermal conductivity and castability.
- (3)
- The thermal conductivity of die-cast aluminum alloys is affected by microstructure and porosity under different processing parameters. Moreover, the rheological die-casting process can improve the thermal conductivity and mechanical properties synergistically. However, the definite influence relationships between processing and thermal conductivity are still insufficient and needed. Strategies to optimize the die-casting processing parameters for die-cast alloys with highly comprehensive properties are also of great interest for future studies. The optimization of processing parameters of die-cast aluminum alloys with high thermal conductivity with the help of advanced software is a feasible method.
- (4)
- Solution and aging heat treatment processes can improve the thermal conductivity of die-cast aluminum alloys mainly through the precipitation from solid solutions and the spheroidization of eutectics. The T7 process has a significant increase in thermal conductivity of die-cast alloys. To adjust the requirement of the trend of large-size die castings, the direct aging process after casting, which can be applied to improve the comprehensive properties of die-cast alloys, is worthy of further studies.
- (5)
- Many theoretical models of composites have been proposed to calculate the thermal conductivity of aluminum alloys, and some of them have been used in die-cast alloys. However, a single model cannot describe the complex microstructure formed in multiple steps during the die-casting process. Therefore, to comprehensively understand the relationship between the microstructure and thermal conductivity in die-cast alloys, a new thermal conductivity calculation model for die-cast alloys needs to be built.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y. The Use of Aluminum Alloys in Structures: Review and Outlook. Structures 2023, 57, 105290. [Google Scholar] [CrossRef]
- You, X.; Xing, Z.; Jiang, S.; Zhu, Y.; Lin, Y.; Qiu, H.; Nie, R.; Yang, J.; Hui, D.; Chen, W.; et al. A Review of Research on Aluminum Alloy Materials in Structural Engineering. Dev. Built Environ. 2024, 17, 100319. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminium Alloys: Structure and Properties, 2nd ed.; Butterworths: London, UK, 1979; ISBN 978-0-408-70932-3. [Google Scholar]
- Aluminium Applications—Construction. Available online: https://aluminiumleader.com/application/construction/ (accessed on 7 January 2024).
- Yaroshevsky, A.A. Abundances of Chemical Elements in the Earth’s Crust. Geochem. Int. 2006, 44, 48–55. [Google Scholar] [CrossRef]
- Bhagtani, P.; Bichler, L.; Bardelcik, A.; Elsayed, A. Modeling Thermal Conductivity of Al-Ni, Al-Fe, and Al-Co Spark Plasma Sintered Alloys. J. Mater. Eng. Perform. 2023, 32, 6821–6832. [Google Scholar] [CrossRef]
- Hirsch, J. Recent Development in Aluminium for Automotive Applications. Trans. Nonferrous Met. Soc. China 2014, 24, 1995–2002. [Google Scholar] [CrossRef]
- Markaustin Aluminium—The Green Metal. Available online: https://www.hazlemerecommercial.co.uk/blog/aluminium-the-green-metal/2012/04/ (accessed on 7 January 2024).
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead: Cambridge, UK, 2002; ISBN 978-1-85573-569-9. [Google Scholar]
- Klemens, P.G. Thermal Conductivity of Pure Metals and Alloys; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 96th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Jiao, X.Y.; Wang, P.Y.; Liu, Y.X.; Wang, J.; Liu, W.N.; Wan, A.X.; Shi, L.J.; Wang, C.G.; Xiong, S.M. Fracture Behavior of a High Pressure Die Casting AlSi10MnMg Alloy with Varied Porosity Levels. J. Mater. Res. Technol. 2023, 25, 1129–1140. [Google Scholar] [CrossRef]
- Chen, Z.W. Formation and Progression of Die Soldering during High Pressure Die Casting. Mater. Sci. Eng. A 2005, 397, 356–369. [Google Scholar] [CrossRef]
- Hu, L.; Chen, S.; Miao, Y.; Meng, Q. Die-Casting Effect on Surface Characteristics of Thin-Walled AZ91D Magnesium Components. Appl. Surf. Sci. 2012, 261, 851–856. [Google Scholar] [CrossRef]
- Kang, C.G.; Lee, S.M.; Kim, B.-M. A Study of Die Design of Semi-Solid Die Casting According to Gate Shape and Solid Fraction. J. Mater. Process. Technol. 2008, 204, 8–21. [Google Scholar] [CrossRef]
- Li, X. Study on Externally Solidified Crystals and Their Relationship with the Defects and Mechanical Properties of High Pressure Die Cast Magnesium Alloys. Ph.D. Thesis, Tsinghua University, Beijing, China, 2017. [Google Scholar]
- Liu, W.; Zhang, W.; Wang, P.; Liu, Y.; Jiao, X.; Wan, A.; Wang, C.; Tong, G.; Xiong, S. Effect of Slow Shot Speed on Externally Solidified Crystal, Porosity and Tensile Property in a Newly Developed High-Pressure Die-Cast Al-Si Alloy. China Foundry 2023, 21, 11–19. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Wang, J.; Liu, C.; Guo, Z.; Wang, J.; Wang, Z.; Gao, J.; Xiong, S.M. Influence of Slow-Shot Speed on PSPs and Porosity of AlSi17Cu2.5 Alloy during High Pressure Die Casting. J. Mater. Process. Technol. 2019, 268, 63–69. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Liu, C.F.; Guo, Z.P.; Nishat, H.; Tong, G.D.; Ma, S.L.; Bi, Y.; Zhang, Y.F.; Wiesner, S.; Xiong, S.M. On the Characterization of Primary Iron-Rich Phase in a High-Pressure Die-Cast Hypoeutectic Al-Si Alloy. J. Alloys Compd. 2021, 862, 158580. [Google Scholar] [CrossRef]
- Li, X.-B.; Xiong, S.-M.; Guo, Z.-P. Characterization of the Grain Structures in Vacuum-Assist High-Pressure Die Casting AM60B Alloy. Acta Metall. Sin. Engl. Lett. 2016, 29, 619–628. [Google Scholar] [CrossRef]
- Guo, Z.-P.; Xiong, S.-M.; Liu, B.-C.; Li, M.; Allison, J. Effect of Process Parameters, Casting Thickness, and Alloys on the Interfacial Heat-Transfer Coefficient in the High-Pressure Die-Casting Process. Metall. Mater. Trans. A 2008, 39, 2896–2905. [Google Scholar] [CrossRef]
- Luo, A.A.; Sachdev, A.K.; Apelian, D. Alloy Development and Process Innovations for Light Metals Casting. J. Mater. Process. Technol. 2022, 306, 117606. [Google Scholar] [CrossRef]
- Li, X.; Xiong, S.M.; Guo, Z. Improved Mechanical Properties in Vacuum-Assist High-Pressure Die Casting of AZ91D Alloy. J. Mater. Process. Technol. 2016, 231, 1–7. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Y.; Wen, C.; Du, J. Effect of Sr Modification on Microstructure and Thermal Conductivity of Hypoeutectic Al−Si Alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2879–2890. [Google Scholar] [CrossRef]
- Families of Alloys—RHEINFELDEN ALLOYS. Available online: https://rheinfelden-alloys.eu/en/alloys/ (accessed on 7 January 2024).
- Wang, Y.; Kang, H.; Guo, Y.; Chen, H.; Hu, M.; Ji, Z. Design and Preparation of Aluminum Alloy with High Thermal Conductivity Based on CALPHAD and First-Principles Calculation. China Foundry 2022, 19, 225–237. [Google Scholar] [CrossRef]
- Li, T.; Song, J.; Zhang, A.; You, G.; Yang, Y.; Jiang, B.; Qin, X.; Xu, C.; Pan, F. Progress and Prospects in Mg-Alloy Super-Sized High Pressure Die Casting for Automotive Structural Components. J. Magnes. Alloys 2023, 11, 4166–4180. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Agrawal, P.; Feng, Z. Microstructure and Mechanical Properties of Ultrasonic Spot Welding of AA7075-T6 and A380 Casting Aluminum Alloy. J. Manuf. Process. 2024, 110, 126–133. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, C.; Kishita, Y.; Wan, A.; Peng, T.; Umeda, Y. Scenario Analysis on Carbon Peaking Pathways for China’s Aluminum Casting Industry. J. Clean. Prod. 2023, 422, 138571. [Google Scholar] [CrossRef]
- Technology—Mega-Casting—AMS January–March 2022. Available online: https://automotivemanufacturingsolutions.h5mag.com/ams_january-march_2022/technology_mega-casting (accessed on 9 January 2024).
- Toyota Showcases Its Own Giga Casting in a Bid to Lower EV Costs. Available online: https://insideevs.com/news/671943/toyota-giga-casting/ (accessed on 9 January 2024).
- VW’s Project Trinity to Use Giga-Casting & Automation to Compete with Tesla. Available online: https://insideevs.com/news/577128/volkwagen-compete-tesla-gigapress-robots/ (accessed on 9 January 2024).
- Sharma, A.; Morisada, Y.; Fujii, H. Influence of Aluminium-Rich Intermetallics on Microstructure Evolution and Mechanical Properties of Friction Stir Alloyed Al Fe Alloy System. J. Manuf. Process. 2021, 68, 668–682. [Google Scholar] [CrossRef]
- Li, Y.; Hu, A.; Fu, Y.; Liu, S.; Shen, W.; Hu, H.; Nie, X. Al Alloys and Casting Processes for Induction Motor Applications in Battery-Powered Electric Vehicles: A Review. Metals 2022, 12, 216. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Wang, J.; Liu, C.F.; Guo, Z.P.; Tong, G.D.; Ma, S.L.; Bi, Y.; Zhang, Y.F.; Xiong, S.M. Characterization of High-Pressure Die-Cast Hypereutectic Al-Si Alloys Based on Microstructural Distribution and Fracture Morphology. J. Mater. Sci. Technol. 2019, 35, 1099–1107. [Google Scholar] [CrossRef]
- Qi, M.; Kang, Y.; Xu, Y.; Wulabieke, Z.; Li, J. A Novel Rheological High Pressure Die-Casting Process for Preparing Large Thin-Walled Al–Si–Fe–Mg–Sr Alloy with High Heat Conductivity, High Plasticity and Medium Strength. Mater. Sci. Eng. A 2020, 776, 139040. [Google Scholar] [CrossRef]
- ADC12 Aluminum A383|Equivalent Materials & Metal Specifications. Available online: https://redstonemanufacturing.com/adc12-aluminum/ (accessed on 9 January 2024).
- Aluminium Alloy A380 properties|OEFORM. Available online: https://oeform.com/die-cast-aluminium-alloy-a380-properties/ (accessed on 9 January 2024).
- A360 Aluminum Properties|Die Cast Materials. Available online: https://www.dynacast.com/en/knowledge-center/material-information/aluminum-die-casting-metals/a360 (accessed on 9 January 2024).
- 384.0 (384.0-F, SC114A, A03840) Cast Aluminum: MakeItFrom.Com. Available online: https://www.makeitfrom.com/material-properties/384.0-384.0-F-SC114A-A03840-Cast-Aluminum (accessed on 9 January 2024).
- Aluminum Alloy 413 Properties|Aluminum Die Casting. Available online: https://www.dynacast.com/en/knowledge-center/material-information/aluminum-die-casting-metals/413 (accessed on 9 January 2024).
- Etxandi-Santolaya, M.; Canals Casals, L.; Corchero, C. Estimation of Electric Vehicle Battery Capacity Requirements Based on Synthetic Cycles. Transp. Res. Part Transp. Environ. 2023, 114, 103545. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Hardesty, L. 5G Base Stations Use a Lot More Energy than 4G Base Stations: MTN|Fierce Wireless. Available online: https://www.fiercewireless.com/tech/5g-base-stations-use-a-lot-more-energy-than-4g-base-stations-says-mtn (accessed on 10 January 2024).
- Solkin, M. Electromagnetic Interference Hazards in Flight and the 5G Mobile Phone: Review of Critical Issues in Aviation Security. Transp. Res. Procedia 2021, 59, 310–318. [Google Scholar] [CrossRef]
- Chou, D. Infrastructure. In Practical Guide to Clinical Computing Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 39–70. ISBN 978-0-12-420217-7. [Google Scholar]
- Yuan, Z.; Guo, Z.; Xiong, S. Microstructure Evolution of Modified Die-Cast AlSi10MnMg Alloy during Solution Treatment and Its Effect on Mechanical Properties. Trans. Nonferrous Met. Soc. China 2019, 29, 919–930. [Google Scholar] [CrossRef]
- Yuan, Z.; Guo, Z.; Xiong, S.M. Effect of As-Cast Microstructure Heterogeneity on Aging Behavior of a High-Pressure Die-Cast A380 Alloy. Mater. Charact. 2018, 135, 278–286. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Hou, J.; Du, W. A Review on Thermal Conductivity of Magnesium and Its Alloys. J. Magnes. Alloys 2020, 8, 78–90. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermal Conductivity: Theory, Properties, and Applications; Physics of solids and liquids; Springer: New York, NY, USA, 2004; ISBN 978-0-306-48327-1. [Google Scholar]
- Wen, C.; Gan, J.; Li, C.; Huang, Y.; Du, J. Comparative Study on Relationship between Modification of Si Phase and Thermal Conductivity of Al–7Si Alloy Modified by Sr/RE/B/Sb Elements. Int. J. Met. 2021, 15, 194–205. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Hu, Z.L.; Wang, J.J. Research Progress on the Aluminum Alloy with High Thermal Conductivity. Appl. Mech. Mater. 2014, 574, 396–400. [Google Scholar] [CrossRef]
- Stojanovic, N.; Maithripala, D.H.S.; Berg, J.M.; Holtz, M. Thermal Conductivity in Metallic Nanostructures at High Temperature: Electrons, Phonons, and the Wiedemann-Franz Law. Phys. Rev. B 2010, 82, 075418. [Google Scholar] [CrossRef]
- Han, S.; Dai, S.; Ma, J.; Ren, Q.; Hu, C.; Gao, Z.; Duc Le, M.; Sheptyakov, D.; Miao, P.; Torii, S.; et al. Strong Phonon Softening and Avoided Crossing in Aliovalence-Doped Heavy-Band Thermoelectrics. Nat. Phys. 2023, 19, 1649–1657. [Google Scholar] [CrossRef]
- Luckyanova, M.N.; Mendoza, J.; Lu, H.; Song, B.; Huang, S.; Zhou, J.; Li, M.; Dong, Y.; Zhou, H.; Garlow, J.; et al. Phonon Localization in Heat Conduction. Sci. Adv. 2018, 4, eaat9460. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.G.; Moore, J.P.; Matsumura, T.; Van Der Meer, M.P. The Thermal and Electrical Conductivity of Aluminum. In Thermal Conductivity 14; Klemens, P.G., Chu, T.K., Eds.; Springer: Boston, MA, USA, 1976; pp. 65–71. ISBN 978-1-4899-3753-7. [Google Scholar]
- Klemens, P.G.; Williams, R.K. Thermal Conductivity of Metals and Alloys. Int. Met. Rev. 1986, 31, 197–215. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Effect of Alloying Elements on Thermal Conductivity of Aluminum. J. Mater. Res. 2023, 38, 2049–2058. [Google Scholar] [CrossRef]
- Lumley, R.N. Fundamentals of Aluminium Metallurgy; Woodhead Publishing: Cambridge, UK, 2018; ISBN 978-0-08-102063-0. [Google Scholar]
- Olafsson, P.; Sandstrom, R.; Karlsson, Å. Comparison of Experimental, Calculated and Observed Values for Electrical and Thermal Conductivity of Aluminium Alloys. J. Mater. Sci. 1997, 32, 4383–4390. [Google Scholar] [CrossRef]
- Lumley, R.N.; Deeva, N.; Larsen, R.; Gembarovic, J.; Freeman, J. The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings. Metall. Mater. Trans. A 2013, 44, 1074–1086. [Google Scholar] [CrossRef]
- Karabay, S. Modification of AA-6201 Alloy for Manufacturing of High Conductivity and Extra High Conductivity Wires with Property of High Tensile Stress after Artificial Aging Heat Treatment for All-Aluminium Alloy Conductors. Mater. Des. 2006, 27, 821–832. [Google Scholar] [CrossRef]
- Jing, L.; Cheng, W.; Gan, J. Influencing Mechanisms of Alloying Elements on the Electrical Conductivity of Pure Aluminum. Mater. Rep. 2021, 35, 24101–24106. [Google Scholar] [CrossRef]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Thermal and Electrical Conductivity in Al–Si/Cu/Fe/Mg Binary and Ternary Al Alloys. J. Mater. Sci. 2015, 50, 5630–5639. [Google Scholar] [CrossRef]
- Ashiri, R.; Karimzadeh, F.; Niroumand, B. On Effect of Squeezing Pressure on Microstructural Characteristics, Heat Treatment Response and Electrical Conductivity of an Al-Si-Mg-Ni-Cu Alloy. Mater. Sci. Technol. 2014, 30, 1162–1169. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Liu, Y.X.; Wang, J.; Liu, W.N.; Wan, A.X.; Wiesner, S.; Xiong, S.M. The Microstructure Characteristics and Fracture Behavior of the Polyhedral Primary Iron-Rich Phase and Plate-Shaped Eutectic Iron-Rich Phase in a High-Pressure Die-Cast AlSi10MnMg Alloy. J. Mater. Sci. Technol. 2023, 140, 201–209. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Zhang, W.; Liu, Y.X.; Wang, J.; Liu, W.N.; Wan, A.X.; Hu, Y.Y.; Tong, G.D.; Xiong, S.M. The Characterization of Porosity and Its Relationship with Externally Solidified Crystal in a High-Pressure Die-Cast AlSi10MnMg Alloy via a Laboratory CT Technique. Mater. Lett. 2023, 335, 133807. [Google Scholar] [CrossRef]
- Cingi, C.; Rauta, V.; Suikkanen, E.; Orkas, J. Effect of Heat Treatment on Thermal Conductivity of Aluminum Die Casting Alloys. Adv. Mater. Res. 2012, 538–541, 2047–2052. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Zhang, Y.F.; Wang, J.; Nishat, H.; Liu, Y.X.; Liu, W.N.; Chen, H.X.; Xiong, S.M. Characterization of Externally Solidified Crystals in a High-Pressure Die-Cast AlSi10MnMg Alloy and Their Effect on Porosities and Mechanical Properties. J. Mater. Process. Technol. 2021, 298, 117299. [Google Scholar] [CrossRef]
- Lin, S.; Dang, J.; Wang, Z.; Sun, Y.; Xiang, Y. Enhanced Strength and Toughness in Al-Mg-Si Alloys with Addition of Cr, Mn, and Cu Elements. J. Mater. Eng. Perform. 2023, 32, 1039–1050. [Google Scholar] [CrossRef]
- Cui, X. Research on the Influence Mechanisms of Melt Complex Boron Treatment and Second Phases Morphological Evolution on Electrical Conductively of Aluminum Alloys. Ph.D. Thesis, Shandong University, Jinan, China, 2016. [Google Scholar]
- Qin, Y.; Yan, Z.; Wu, Q.; Jiang, A.; Li, Y.; Ma, S.; Lü, S.; Li, J. Development of a Novel High Strength Al-Si-Cu-Ni Alloy by Combining Micro-Alloying and Squeeze Casting. J. Alloys Compd. 2023, 967, 171780. [Google Scholar] [CrossRef]
- Zhai, W.; Sun, H.; Sun, L.; Zhao, Q.; Liu, Y.; Wang, Y.; Pu, B.; Zhang, B.; Wang, S. Influence of Cu Content on Mechanical and Tribological Properties of Al–7Si–Cu Alloy. J. Mater. Res. Technol. 2023, 26, 4848–4859. [Google Scholar] [CrossRef]
- Qi, M.; Kang, Y.; Qiu, Q.; Tang, W.; Li, J.; Li, B. Microstructures, Mechanical Properties, and Corrosion Behavior of Novel High-Thermal-Conductivity Hypoeutectic Al-Si Alloys Prepared by Rheological High Pressure Die-Casting and High Pressure Die-Casting. J. Alloys Compd. 2018, 749, 487–502. [Google Scholar] [CrossRef]
- Payandeh, M.; Sjölander, E.; Jarfors, A.E.W.; Wessén, M. Influence of Microstructure and Heat Treatment on Thermal Conductivity of Rheocast and Liquid Die Cast Al-6Si-2Cu-Zn Alloy. Int. J. Cast Met. Res. 2016, 29, 202–213. [Google Scholar] [CrossRef]
- Jang, J.-C.; Shin, K.S. Effects of Ni and Cu Addition on Tensile Properties and Thermal Conductivity of High Pressure Die-cast Al-6Si Alloys. Korean J. Met. Mater. 2020, 58, 217–226. [Google Scholar] [CrossRef]
- Samuel, A.M.; Gauthier, J.; Samuel, F.H. Microstructural Aspects of the Dissolution and Melting of Al2Cu Phase in Al-Si Alloys during Solution Heat Treatment. Metall. Mater. Trans. A 1996, 27, 1785–1798. [Google Scholar] [CrossRef]
- Choi, S.W.; Cho, H.S.; Kumai, S. Effect of the Precipitation of Secondary Phases on the Thermal Diffusivity and Thermal Conductivity of Al-4.5Cu Alloy. J. Alloys Compd. 2016, 688, 897–902. [Google Scholar] [CrossRef]
- Vandersluis, E.; Ravindran, C. Effects of Solution Heat Treatment Time on the As-Quenched Microstructure, Hardness and Electrical Conductivity of B319 Aluminum Alloy. J. Alloys Compd. 2020, 838, 155577. [Google Scholar] [CrossRef]
- Kumar, L.; Jang, J.C.; Yu, H.; Shin, K.S. Effect of Secondary Phase on Mechanical and Thermal Conductivity of Al-Si-xFe-Mg-yCu-Mn Die Casting Alloys. Mater. Lett. 2022, 314, 131889. [Google Scholar] [CrossRef]
- Kumar, L.; Jang, J.C.; Yu, H.; Shin, K.S. Effects of Cr and Ti Addition on Mechanical Properties and Thermal Conductivity of Al–7Si–3Mg Die-Casting Alloys. Met. Mater. Int. 2023, 29, 204–214. [Google Scholar] [CrossRef]
- Kim, C.W.; Cho, J.I.; Choi, S.W.; Kim, Y.C. The Effect of Alloying Elements on Thermal Conductivity of Aluminum Alloys in High Pressure Die Casting. Adv. Mater. Res. 2013, 813, 175–178. [Google Scholar] [CrossRef]
- Kim, C.-W.; Kim, Y.-C.; Kim, J.-H.; Cho, J.-I.; Oh, M.-S. Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting. Korean J. Met. Mater. 2018, 56, 805–812. [Google Scholar] [CrossRef]
- Cho, Y.H.; Kim, H.W.; Lee, J.M.; Kim, M.S. A New Approach to the Design of a Low Si-Added Al–Si Casting Alloy for Optimising Thermal Conductivity and Fluidity. J. Mater. Sci. 2015, 50, 7271–7281. [Google Scholar] [CrossRef]
- Becker, H.; Bergh, T.; Vullum, P.E.; Leineweber, A.; Li, Y. β- and δ-Al-Fe-Si Intermetallic Phase, Their Intergrowth and Polytype Formation. J. Alloys Compd. 2019, 780, 917–929. [Google Scholar] [CrossRef]
- Becker, H.; Bergh, T.; Vullum, P.E.; Leineweber, A.; Li, Y. Effect of Mn and Cooling Rates on α-, β- and δ-Al–Fe–Si Intermetallic Phase Formation in a Secondary Al–Si Alloy. Materialia 2019, 5, 100198. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, Y.; Xu, B.; Gu, C.; Wang, Y.; Tang, Q. Effect of Microstructure Evolution of Iron-Rich Intermetallic Compounds on Mechanical Property of Al–7Si–0.3Mg Casting Alloy with Low Iron Content. Metall. Mater. Trans. B 2022, 53, 548–560. [Google Scholar] [CrossRef]
- Wang, M.; Hu, K.; Liu, G.; Liu, X. Synchronous Improvement of Electrical and Mechanical Performance of A356 Alloy Reinforced by Boron Coupling Nano-AlNp. J. Alloys Compd. 2020, 814, 152217. [Google Scholar] [CrossRef]
- Ye, H.; Cui, X.; Cui, H.; Li, X.; Zhu, Z.; Pan, Y.; Feng, R. Study about Improving Mechanism of Electrical Conductivity of AA1070Al Treated by a Novel Composite Boron Treatment with Trace Ti. J. Alloys Compd. 2021, 870, 159416. [Google Scholar] [CrossRef]
- Xu, X.; Feng, Y.; Yang, P.; Zhang, B.; Wang, Y.; Wang, Q.; Fan, X.; Ding, H. The Influence of Trace Elements on the Microstructures and Properties of the Aluminum Conductors. Results Phys. 2018, 11, 1058–1063. [Google Scholar] [CrossRef]
- Cui, X.; Wu, Y.; Cui, H.; Zhang, G.; Zhou, B.; Liu, X. The Improvement of Boron Treatment Efficiency and Electrical Conductivity of AA1070Al Achieved by Trace Ti Assistant. J. Alloys Compd. 2018, 735, 62–67. [Google Scholar] [CrossRef]
- Khaliq, A.; Rhamdhani, M.A.; Brooks, G.A.; Grandfield, J.F. Removal of Vanadium from Molten Aluminum-Part I. Analysis of VB2 Formation. Metall. Mater. Trans. B 2014, 45, 752–768. [Google Scholar] [CrossRef]
- Khaliq, A.; Rhamdhani, M.A.; Brooks, G.A.; Grandfield, J.F. Removal of Vanadium from Molten Aluminum—Part II. Kinetic Analysis and Mechanism of VB2 Formation. Metall. Mater. Trans. B 2014, 45, 769–783. [Google Scholar] [CrossRef]
- Khaliq, A.; Akbar Rhamdhani, M.; Brooks, G.A.; Grandfield, J. Removal of Vanadium from Molten Aluminum—Part III. Analysis of Industrial Boron Treatment Practice. Metall. Mater. Trans. B 2014, 45, 784–794. [Google Scholar] [CrossRef]
- Yang, Z.; He, X.; Li, B.; Atrens, A.; Yang, X.; Cheng, H. Influence of Si, Cu, B, and Trace Alloying Elements on the Conductivity of the Al-Si-Cu Alloy. Materials 2022, 15, 426. [Google Scholar] [CrossRef] [PubMed]
- Rauta, V.; Cingi, C.; Orkas, J. Effect of Annealing and Metallurgical Treatments on Thermal Conductivity of Aluminium Alloys. Int. J. Met. 2016, 10, 157–171. [Google Scholar] [CrossRef]
- Timpel, M.; Wanderka, N.; Schlesiger, R.; Yamamoto, T.; Lazarev, N.; Isheim, D.; Schmitz, G.; Matsumura, S.; Banhart, J. The Role of Strontium in Modifying Aluminium–Silicon Alloys. Acta Mater. 2012, 60, 3920–3928. [Google Scholar] [CrossRef]
- Moniri, S.; Shahani, A.J. Chemical Modification of Degenerate Eutectics: A Review of Recent Advances and Current Issues. J. Mater. Res. 2019, 34, 20–34. [Google Scholar] [CrossRef]
- Lu, S.-Z.; Hellawell, A. The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning. Metall. Trans. A 1987, 18, 1721–1733. [Google Scholar] [CrossRef]
- Hamilton, D.R.; Seidensticker, R.G. Propagation Mechanism of Germanium Dendrites. J. Appl. Phys. 1960, 31, 1165–1168. [Google Scholar] [CrossRef]
- Nagaumi, H.; Wu, Y.F.; Zhu, G.L.; Xu, Y. A Novel High Thermal Conductivity Al-Si Casting Alloy and Application; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2015. [Google Scholar]
- Liu, W.; Li, Y.; Song, Z.; Luo, X.; Yang, H.; Bi, G. Effect of Trace Sr+Ce Compound Modification on Microstructure, Thermal Conductivity and Mechanical Properties of AlSi10MnMg Alloy. Chin. J. Nonferrous Met. 2022, 32, 332–342. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Song, Z.; Bi, G.; Yang, H.; Cao, Y. Effect of Sr+Er Composite Modification on Microstructure, Thermal Conductivity and Mechanical Properties of AlSi10MnMg Alloy. Mater. Rep. 2023, 37, 131–137. [Google Scholar]
- Zhang, Y.; Wei, F.; Mao, J.; Niu, G. The Difference of La and Ce as Additives of Electrical Conductivity Aluminum Alloys. Mater. Charact. 2019, 158, 109963. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, Y.M.; Lee, K.M.; Cho, H.S.; Hong, S.K.; Kim, Y.C.; Kang, C.S.; Kumai, S. The Effects of Cooling Rate and Heat Treatment on Mechanical and Thermal Characteristics of Al–Si–Cu–Mg Foundry Alloys. J. Alloys Compd. 2014, 617, 654–659. [Google Scholar] [CrossRef]
- Ravi, K.R.; Pillai, R.M.; Amaranathan, K.R.; Pai, B.C.; Chakraborty, M. Fluidity of Aluminum Alloys and Composites: A Review. J. Alloys Compd. 2008, 456, 201–210. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Prabhakar, K.V. Wrought Aluminum-Nickel Alloys for High Strength-High Conductivity Applications. Metall. Trans. A 1974, 6, 1003–1008. [Google Scholar] [CrossRef]
- Sankanit, P.; Uthaisangsuk, V.; Pandee, P. Tensile Properties of Hypoeutectic Al-Ni Alloys: Experiments and FE Simulations. J. Alloys Compd. 2021, 889, 161664. [Google Scholar] [CrossRef]
- Palanivel, S.; Kuehmann, C.; Stucki, J.R.; Filip, E.; Edwards, P. Aluminum Alloys for Die. Casting. Patent WO2020028730A1, 11 October 2019. [Google Scholar]
- Wang, K.; Hu, S.; Zhong, Y.; Jin, S.; Zhou, Z.; Wang, Z.; Chen, J.; Wan, B.; Li, W. Effects of Trace Ytterbium Addition on Microstructure, Mechanical and Thermal Properties of Hypoeutectic Al–5Ni Alloy. J. Rare Earths 2022, 40, 1305–1315. [Google Scholar] [CrossRef]
- Developed Alloys|Products and Services|Nikkei MC Aluminium Co., Ltd. Available online: https://www.nmca.jp/en/product/development-alloy.html (accessed on 7 January 2024).
- Liu, C.; Jiao, X.; Nishat, H.; Akhtar, S.; Wiesner, S.; Guo, Z.; Xiong, S. Characteristics of Fe-Rich Intermetallics Compounds and Their Influence on the Cracking Behavior of a Newly Developed High-Pressure Die Cast Al–4Mg–2Fe Alloy. J. Alloys Compd. 2021, 854, 157121. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. ASM Handbook Volume 3 Alloy Phase Diagrams, 10th ed.; ASM International: Materials Park, OH, USA, 1990; ISBN 978-0-87170-377-4. [Google Scholar]
- Kim, K.T.; Lim, Y.S.; Shin, J.S.; Ko, S.H.; Kim, J.M. Effects of Zn and Mg Amounts on the Properties of High Thermal Conductivity Al-Zn-Mg-Fe Alloys for Die Casting. J. Korea Foundry Soc. 2013, 33, 113–121. [Google Scholar] [CrossRef]
- Jiang, H.; Li, S.; Zheng, Q.; Zhang, L.; He, J.; Song, Y.; Deng, C.; Zhao, J. Effect of Minor Lanthanum on the Microstructures, Tensile and Electrical Properties of Al-Fe Alloys. Mater. Des. 2020, 195, 108991. [Google Scholar] [CrossRef]
- Luo, G.; Zhou, X.; Li, C.; Du, J.; Huang, Z. Design and Preparation of Al-Fe-Ce Ternary Aluminum Alloys with High Thermal Conductivity. Trans. Nonferrous Met. Soc. China 2022, 32, 1781–1794. [Google Scholar] [CrossRef]
- Luo, G.; Huang, Y.; Li, C.; Huang, Z.; Du, J. Microstructures and Mechanical Properties of Al-2Fe-xCo Ternary Alloys with High Thermal Conductivity. Materials 2020, 13, 3728. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, Y.; Dai, S.; Chen, Z.; Wang, M.; Chen, D.; Wang, H. Regulating Microstructures and Mechanical Properties of Al–Fe–Ni Alloys. Prog. Nat. Sci. Mater. Int. 2020, 30, 54–62. [Google Scholar] [CrossRef]
- Bian, Z.; Xiao, Y.; Hu, L.; Liu, Y.; Chen, Z.; Wang, M.; Chen, D.; Wang, H. Stimulated Heterogeneous Distribution of Sc Element and Its Correlated Local Hardening Effect in Al–Fe–Ni-Sc Alloy. Mater. Sci. Eng. A 2020, 771, 138650. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Makhlouf, M.M. Alternatives to the Al–Si Eutectic System in Aluminum Casting Alloys. Int. J. Met. 2016, 10, 342–347. [Google Scholar] [CrossRef]
- Jiang, M.; Mo, L.; Zhou, X.; Liu, X.; Zhan, M.; Du, J. Microstructure Evolution and Thermophysical Properties of Hypereutectic Al-Fe-Ni Alloys. Int. J. Met. 2023, 17, 2780–2793. [Google Scholar] [CrossRef]
- Luo, G. Study on Microstructure Regulation and Performance of Al-Fe Based Alloys with High Thermal Conductivity. Master’s Thesis, South China University of Technology, Guangzhou, China, 2021. [Google Scholar]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Effects of Casting and Heat Treatment Processes on the Thermal Conductivity of an Al-Si-Cu-Fe-Zn Alloy. Int. J. Heat Mass Transf. 2017, 105, 189–195. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, H.; Wang, X.; Fu, J. Microstructure and Properties of AlSi12Fe Alloy High Pressure Die-Castings under Different Vacuum Levels. Vacuum 2020, 180, 109561. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Liu, W.; Jiao, X.; Nishat, H.; Ajavavarakula, D.; Chen, H.; Xiong, S. Enhanced Mechanical Properties and Thermal Conductivity of High-Pressure Die-Cast AlMg6Si2MnZr Alloy by Controlling the Externally Solidified Crystals. J. Mater. Process. Technol. 2022, 306, 117645. [Google Scholar] [CrossRef]
- Hitchcock, M.; Wang, Y.; Fan, Z. Secondary Solidification Behaviour of the Al–Si–Mg Alloy Prepared by the Rheo-Diecasting Process. Acta Mater. 2007, 55, 1589–1598. [Google Scholar] [CrossRef]
- Fan, Z. Semisolid Metal Processing. Int. Mater. Rev. 2002, 47, 49–85. [Google Scholar] [CrossRef]
- Kirkwood, D.H. Semisolid Metal Processing. Int. Mater. Rev. 1994, 39, 173–189. [Google Scholar] [CrossRef]
- Qi, M.; Kang, Y.; Zhu, G. Microstructure and Properties of Rheo-HPDC Al-8Si Alloy Prepared by Air-Cooled Stirring Rod Process. Trans. Nonferrous Met. Soc. China 2017, 27, 1939–1946. [Google Scholar] [CrossRef]
- Lordan, E.; Zhang, Y.; Dou, K.; Jacot, A.; Tzileroglou, C.; Wang, S.; Wang, Y.; Patel, J.; Lazaro-Nebreda, J.; Zhou, X.; et al. High-Pressure Die Casting: A Review of Progress from the EPSRC Future LiME Hub. Metals 2022, 12, 1575. [Google Scholar] [CrossRef]
- Arunkumar, K.; Bakshi, S.; Phanikumar, G.; Rao, T.V.L.N. Study of Flow and Heat Transfer in High Pressure Die Casting Cooling Channel. Metall. Mater. Trans. B 2023, 54, 1665–1674. [Google Scholar] [CrossRef]
- Koru, M.; Serçe, O. Experimental and Theoretical Investigation of Heat Transfer in Vacuum Assisted High Pressure Die Casting (HPDC) Process. Int. J. Met. 2023. [Google Scholar] [CrossRef]
- Gautam, S.K.; Roy, H.; Lohar, A.K.; Samanta, S.K. Studies on Mold Filling Behavior of Al–10.5Si–1.7Cu Al Alloy During Rheo Pressure Die Casting System. Int. J. Met. 2023, 17, 2868–2877. [Google Scholar] [CrossRef]
- Trometer, N.; Godlewski, L.A.; Prabhu, E.; Schopen, M.; Luo, A.A. Effect of Vacuum on Die Filling in High Pressure Die Casting: Water Analog, Process Simulation and Casting Validation. Int. J. Met. 2024, 18, 69–85. [Google Scholar] [CrossRef]
- Dou, K.; Lordan, E.; Zhang, Y.; Jacot, A.; Fan, Z. A Novel Approach to Optimize Mechanical Properties for Aluminium Alloy in High Pressure Die Casting (HPDC) Process Combining Experiment and Modelling. J. Mater. Process. Technol. 2021, 296, 117193. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, G.; Li, T.; Ji, S. Effect of High Pressure Die Casting on the Castability, Defects and Mechanical Properties of Aluminium Alloys in Extra-Large Thin-Wall Castings. J. Mater. Process. Technol. 2022, 303, 117525. [Google Scholar] [CrossRef]
- Cai, Q.; Mendis, C.L.; Wang, S.; Chang, I.T.H.; Fan, Z. Effect of Heat Treatment on Microstructure and Tensile Properties of Die-Cast Al-Cu-Si-Mg Alloys. J. Alloys Compd. 2021, 881, 160559. [Google Scholar] [CrossRef]
- Tao, C.; Cheng, X.-N.; Li, Z.-Q.; Liu, G.-L.; Xu, F.-H.; Xie, S.-K.; Kuang, Z.-H.; Guo, Y.; Liu, H.-X. Mechanism of Cryogenic, Solid Solution and Aging Compound Heat Treatment of Die-Cast Al Alloys Considering Microstructure Variation. Rare Met. 2023, 42, 3130–3138. [Google Scholar] [CrossRef]
- Zhang, J.; Cinkilic, E.; Huang, X.; Wang, G.G.; Liu, Y.; Weiler, J.P.; Luo, A.A. Optimization of T5 Heat Treatment in High Pressure Die Casting of Al–Si–Mg–Mn Alloys by Using an Improved Kampmann-Wagner Numerical (KWN) Model. Mater. Sci. Eng. A 2023, 865, 144604. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef]
- Yuan, Z. Effect of Heat Treatment on Microstructure, Defects and Mechanical Properties of High Pressure Die Castings of Aluminum Alloys. Ph.D. Thesis, Tsinghua University, Beijing, China, 2019. [Google Scholar]
- Han, Y.; Shao, D.; Chen, B.A.; Peng, Z.; Zhu, Z.X.; Zhang, Q.; Chen, X.; Liu, G.; Li, X.M. Effect of Mg/Si Ratio on the Microstructure and Hardness–Conductivity Relationship of Ultrafine-Grained Al–Mg–Si Alloys. J. Mater. Sci. 2017, 52, 4445–4459. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Chen, X.; Yin, Y.; He, Y.; Zhou, Z.; Guan, R. Microstructure Evolution of Eutectic Si in Al-7Si Binary Alloy by Heat Treatment and Its Effect on Enhancing Thermal Conductivity. J. Mater. Res. Technol. 2020, 9, 8780–8786. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Choi, S.-W.; Kim, Y.-C.; Kang, C.-S. Influences of Heat Treatment on the Thermal Diffusivity and Corrosion Characterization of Al-Mg-Si alloy. Korean J. Met. Mater. 2021, 59, 582–588. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, Y.; Gong, M.; Zheng, X.; Peng, J. Effects of Precipitates and Its Interface on Thermal Conductivity of Mg–12Gd Alloy during Aging Treatment. Mater. Charact. 2018, 138, 284–288. [Google Scholar] [CrossRef]
- Lumley, R.N.; Polmear, I.J.; Groot, H.; Ferrier, J. Thermal Characteristics of Heat-Treated Aluminum High-Pressure Die-Castings. Scr. Mater. 2008, 58, 1006–1009. [Google Scholar] [CrossRef]
- Pauzon, C.; Buttard, M.; Després, A.; Charlot, F.; Fivel, M.; Chehab, B.; Blandin, J.-J.; Martin, G. Direct Ageing of LPBF Al-1Fe-1Zr for High Conductivity and Mechanical Performance. Acta Mater. 2023, 258, 119199. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Javidani, M.; Khangholi, S.N.; Pan, L.; Chen, X.-G. Enhanced Mechanical Strength and Electrical Conductivity of Al–Ni-Based Conductor Cast Alloys Containing Mg and Si. Adv. Eng. Mater. 2024, 26, 2301241. [Google Scholar] [CrossRef]
- Wang, J.; Carson, J.K.; North, M.F.; Cleland, D.J. A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials. Int. J. Heat Mass Transf. 2006, 49, 3075–3083. [Google Scholar] [CrossRef]
- Helsing, J.; Grimvall, G. Thermal Conductivity of Cast Iron: Models and Analysis of Experiments. J. Appl. Phys. 1991, 70, 1198–1206. [Google Scholar] [CrossRef]
- Su, C. Thermal Mechanism of Magnesium Alloys Based on Solute Atom and Second Phase. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2019. [Google Scholar]
- Hamilton, R.L.; Crosser, O.K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Vaney, J.-B.; Piarristeguy, A.; Ohorodniichuck, V.; Ferry, O.; Pradel, A.; Alleno, E.; Monnier, J.; Lopes, E.B.; Gonçalves, A.P.; Delaizir, G.; et al. Effective Medium Theory Based Modeling of the Thermoelectric Properties of Composites: Comparison between Predictions and Experiments in the Glass–Crystal Composite System Si10As15Te75–Bi0.4Sb1.6Te3. J. Mater. Chem. C 2015, 3, 11090–11098. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Wang, P.Y.; Liu, Y.X.; Jiang, J.J.; Liu, W.N.; Wan, A.X.; Shi, L.J.; Wang, C.G.; Xiong, S.M. Effect of Shot Speeds on the Microstructural Framework and Abnormal Eutectic Bands in a High Pressure Die Casting Hypoeutectic AlSi10MnMg Alloy. J. Mater. Process. Technol. 2024, 326, 118312. [Google Scholar] [CrossRef]
Alloy Designation | Temper | Thermal Conductivity (W m−1 K−1) | Yield Strength (MPa) | Refs. |
---|---|---|---|---|
A390 | F | 97 | 240 | [35,36] |
ADC12 | F | 92 | 165 | [37] |
A380 | F | 96 | 160 | [38] |
A360 | F | 113 | 170 | [39] |
384 | F | 96 | 170 | [40] |
413 | F | 113 | 145 | [41] |
Castasil®-37 | F | 130 | 135 | [25] |
Alloying Element | Maximum Solubility in α-Al (wt.%) | (μΩ cm wt.%−1) | (μΩ cm wt.%−1) | |
---|---|---|---|---|
Zn | 82.8 | 0.094 | 0.023 | 4.09 |
Mg | 14.9 | 0.54 | 0.22 | 2.45 |
Cu | 5.65 | 0.344 | 0.03 | 11.47 |
Li | 4 | 3.31 | 0.68 | 4.87 |
Mn | 1.82 | 2.94 | 0.34 | 8.65 |
Si | 1.65 | 1.02 | 0.088 | 11.59 |
Ti | 1 | 2.88 | 0.12 | 24 |
Cr | 0.77 | 4.00 | 0.18 | 22.22 |
V | 0.6 | 3.58 | 0.28 | 12.79 |
Zr | 0.28 | 1.74 | 0.044 | 39.55 |
Fe | 0.05 | 2.56 | 0.058 | 44.14 |
Ni | 0.05 | 0.81 | 0.061 | 13.28 |
Alloy | Process | Temper | Electrical Conductivity (% IACS) | Thermal Conductivity (W m−1 K−1) | Yield Strength (MPa) | Ref. |
---|---|---|---|---|---|---|
Al–5.3Ni–0.35Fe–0.03Ti | DC | F | 50 | - | 90 | [109] |
DX01 | DC | F | 51 | 205 | 57 | [111] |
DX02 | DC | F | 51 | 200 | 64 | [111] |
DX26 | DC | F | 48 | 190 | 68 | [111] |
Al–1.75Fe–1.25Ni | GC | F | 52 | 207 | - | [121] |
Alloy | Heat Treatment | Thermal Conductivity (W m−1 K−1) | Improvement Ratio (%) | Ref. |
---|---|---|---|---|
A380 | T4 | 120 | 9.1 | [146] |
A380 | T6 | 129 | 17.3 | [146] |
A380 | T7 | 135 | 22.7 | [146] |
Al–10.5Si–1.75Cu–0.71Fe–0.16Mn–0.23Mg–0.76Zn | T7 | 155 | 61.6 | [61] |
Al–10.6Si–2.41Cu–0.85Fe–0.2Mn–0.22Mg–0.75Zn | T7 | 150 | 59.8 | [61] |
Al–10.07Si–2.16Cu–0.25Fe–0.49Mn–0.1Mg | T7 | 125 | 16.2 | [61] |
Al–10.4Si–2.25Cu–0.25Fe–0.47Mn–0.22Mg | T7 | 117 | 16.9 | [61] |
Al–7.2Si–1.8Cu–0.24Fe–0.46Mn–0.22Mg–0.43Zn–0.1Ti | T7 | 121 | 12.6 | [61] |
Al–10Si–0.6Cu–0.9Fe–0.7Zn | T4 | 147 | 16.2 | [123] |
Al–10Si–0.6Cu–0.9Fe–0.7Zn | T6 (1 h) | 149 | 17.1 | [123] |
Al–10Si–0.6Cu–0.9Fe–0.7Zn | T6 (4 h) | 152 | 19.6 | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xiong, S. Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys. Metals 2024, 14, 370. https://doi.org/10.3390/met14040370
Liu Y, Xiong S. Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys. Metals. 2024; 14(4):370. https://doi.org/10.3390/met14040370
Chicago/Turabian StyleLiu, Yixian, and Shoumei Xiong. 2024. "Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys" Metals 14, no. 4: 370. https://doi.org/10.3390/met14040370
APA StyleLiu, Y., & Xiong, S. (2024). Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys. Metals, 14(4), 370. https://doi.org/10.3390/met14040370