Effects of Alloying Element on Hydrogen Adsorption and Diffusion on α-Fe(110) Surfaces: First Principles Study
Abstract
:1. Introduction
2. Computational Methodology
2.1. Site Selection
2.2. Adsorption Model Construction
2.3. Calculation of Adsorption Energy
2.4. Adsorption of Hydrogen on Metal Surface
2.5. Adsorption and Diffusion of Hydrogen Atoms on the Metal Surface
3. Results and Discussion
3.1. Hydrogen Adsorption under Different Doping
3.2. Hydrogen Atom Chemisorption
3.3. DOS Functions of Chemisorption under Different Doping
3.4. Hydrogen Atom Diffusion under Different Doping
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ott, B.; Delafontaine, L.; Welchert, N.A.; Dee, S.; Reza, A. Ensuring natural gas infrastructure is suitable for hydrogen service. Process Saf. Prog. 2023, 42, 213–224. [Google Scholar] [CrossRef]
- Bae, D.S.; Baek, U.B.; Nahm, S.H.; Jo, I. Effect of electrochemical hydrogen charging time on hydrogen embrittlement of the hot-rolled and accelerated cooling treated API X70 steel. Met. Mater. Int. 2022, 28, 466–474. [Google Scholar] [CrossRef]
- Bolobov, V.I.; Latipov, I.U.; Popov, G.G.; Buslaev, G.V.; Martynenko, Y.V. Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels. Energies 2021, 14, 6085. [Google Scholar] [CrossRef]
- Di Lullo, G.; Oni, A.O.; Kumar, A. Blending blue hydrogen with natural gas for direct consumption: Examining the effect of hydrogen concentration on transportation and well-to-combustion greenhouse gas emissions. Int. J. Hydrogen Energy 2021, 46, 19202–19216. [Google Scholar] [CrossRef]
- Liu, B.; Liu, S.; Guo, S.; Zhang, S. Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. Int. J. Hydrogen Energy 2020, 45, 1385–1398. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, C.; Yan, S.; Yan, Y.; Guo, Y.; Shao, T.; Li, T.; Jia, X.; Hao, J. Dynamic modeling and characteristic analysis of natural gas network with hydrogen injections. Int. J. Hydrogen Energy 2022, 47, 33209–33223. [Google Scholar] [CrossRef]
- Liu, J.; Teng, L.; Liu, B.; Han, P.; Li, W. Analysis of hydrogen gas injection at various compositions in an existing natural gas pipeline. Front. Energy Res. 2021, 9, 685079. [Google Scholar] [CrossRef]
- Cerniauskas, S.; Jose Chavez Junco, A.; Grube, T.; Robinius, M.; Stolten, D. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study. Int. J. Hydrogen Energy 2020, 45, 12095–12107. [Google Scholar] [CrossRef]
- Meng, B.; Gu, C.; Zhang, L.; Zhou, C.; Li, X.; Zhao, Y.; Zheng, J.; Chen, X.; Han, Y. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrogen Energy 2017, 42, 7404–7412. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bae, K.O.; Jaeyeong, P.; Nahm, S.H.; Baek, U.B. Damage associated with interactions between microstructural characteristics and hydrogen/methane gas mixtures of pipeline steels. Int. J. Hydrogen Energy 2022, 47, 31499–31520. [Google Scholar] [CrossRef]
- Cho, L.; Kong, Y.; Speer, J.G.; Findley, K.O. Hydrogen Embrittlement of Medium Mn Steels. Metals 2021, 11, 358. [Google Scholar] [CrossRef]
- Galliano, F.; Andrieu, E.; Cloué, J.-M.; Odemer, G.; Blanc, C. Effect of temperature on hydrogen embrittlement susceptibility of alloy 718 in Light Water Reactor environment. Int. J. Hydrogen Energy 2017, 42, 21371–21378. [Google Scholar] [CrossRef]
- Park, H.; Moon, B.; Moon, Y.; Kang, N. Hydrogen stress cracking behaviour in dissimilar welded joints of duplex stainless steel and carbon steel. Metals 2021, 11, 1039. [Google Scholar] [CrossRef]
- Gaude-Fugarolas, D. Hydrogen Transport and Metal Embrittlement Risk in Storage and Industrial Applications. Defect Diffus. Forum 2019, 397, 141–146. [Google Scholar] [CrossRef]
- Staykov, A.; Yamabe, J.; Somerday, B.P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface. Int. J. Quantum Chem. 2014, 114, 626–635. [Google Scholar] [CrossRef]
- An, T.; Zhang, S.; Feng, M.; Luo, B.; Zheng, S.; Chen, L.; Zhang, L. Synergistic action of hydrogen gas and weld defects on fracture toughness of X80 pipeline steel. Int. J. Fatigue 2019, 120, 23–32. [Google Scholar] [CrossRef]
- Feng, C.; Peng, Z.; Li, X.; Bao, S.; Jiang, X. Ductile Fracture Prediction of X80 Pipeline Steel Using Void Growth Model. Metals 2022, 12, 923. [Google Scholar] [CrossRef]
- Mondal, B.C.; Dhar, A.S. Burst pressure assessment of corroded pipelines using fracture mechanics criterion. Eng. Fail. Anal. 2019, 104, 139–153. [Google Scholar] [CrossRef]
- Cauwels, M.; Depraetere, R.; De Waele, W.; Hertelé, S.; Depover, T.; Verbeken, K. Influence of electrochemical hydrogenation parameters on microstructures prone to hydrogen-induced cracking. J. Nat. Gas Sci. Eng. 2022, 101, 104533. [Google Scholar] [CrossRef]
- Wasim, M.; Djukic, M.B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels. Int. J. Hydrogen Energy 2020, 45, 2145–2156. [Google Scholar] [CrossRef]
- Eliaz, N.; Banks-Sills, L.; Ashkenazi, D.; Eliasi, R. Modeling failure of metallic glasses due to hydrogen embrittlement in the absence of external loads. Acta Mater. 2004, 52, 93–105. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 2012, 30, 105–123. [Google Scholar] [CrossRef]
- Matsumoto, R.; Taketomi, S.; Matsumoto, S.; Miyazaki, N. Atomistic simulations of hydrogen embrittlement. Int. J. Hydrogen Energy 2009, 34, 9576–9584. [Google Scholar] [CrossRef]
- Sofronis, P.; Robertson, I.M. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos. Mag. A 2002, 82, 3405–3413. [Google Scholar] [CrossRef]
- Takakuwa, O.; Mano, Y.; Soyama, H. Increase in the local yield stress near surface of austenitic stainless steel due to invasion by hydrogen. Int. J. Hydrogen Energy 2014, 39, 6095–6103. [Google Scholar] [CrossRef]
- Vink, T.J.; Gijzeman, O.; Geus, J.W. CO interaction with Fe(100): Effects of carbon and oxygen adlayers on co adsorption isotherms. Surf. Sci. 1985, 150, 14–23. [Google Scholar] [CrossRef]
- Benziger, J.; Madix, R.J. The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100). Surf. Sci. 1980, 94, 119–153. [Google Scholar] [CrossRef]
- Merrill, P.B.; Madix, R.J. Hydrogen bonding on iron: Correlation of adsorption and desorption states on Fe(100) and perturbation of the Fe-H bond with coadsorbed CO. Surf. Sci. 1996, 347, 249–264. [Google Scholar] [CrossRef]
- Sorescu, D.C. First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal. Today 2005, 105, 44–65. [Google Scholar] [CrossRef]
- Yu, M.; Liu, L.; Wang, Q.; Jia, L.; Hou, B.; Si, Y.; Li, D.; Zhao, Y. High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics. Int. J. Hydrogen Energy 2018, 43, 5576–5590. [Google Scholar] [CrossRef]
- Álvarez-Falcón, L.; Viñes, F.; Notario-Estévez, A.; Illas, F. On the hydrogen adsorption and dissociation on Cu surfaces and nanorows. Surf. Sci. 2016, 646, 221–229. [Google Scholar] [CrossRef]
- Yanachkov, B.; Lyutov, L.; Katzarov, I.; Drenchev, L.; Kolev, K. Effect of Microstructure on the Mechanical Response of Hydrogen-Charged Pure Iron. Metals 2022, 12, 2160. [Google Scholar] [CrossRef]
- Zhang, S.; Li, K.; Ma, Y.; Bu, Y.; Liang, Z.; Yang, Z.; Zhang, J. The Adsorption Mechanism of Hydrogen on FeO Crystal Surfaces: A Density Functional Theory Study. Nanomaterials 2023, 13, 2051. [Google Scholar] [CrossRef] [PubMed]
- Dadfarnia, M.; Martin, M.L.; Nagao, A.; Sofronis, P.; Robertson, I.M. Modeling hydrogen transport by dislocations. J. Mech. Phys. Solids 2015, 78, 511–525. [Google Scholar] [CrossRef]
- Ferrin, P.; Kandoi, S.; Nilekar, A.U.; Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689. [Google Scholar] [CrossRef]
- Xie, W.; Peng, L.; Peng, D.; Gu, F.L.; Liu, J. Processes of H2 adsorption on Fe(110) surface: A density functional theory study. Appl. Surf. Sci. 2014, 296, 47–52. [Google Scholar] [CrossRef]
- Chohan, U.K.; Jimenez-Melero, E.; Koehler, S.P.K. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles. Appl. Surf. Sci. 2016, 387, 385–392. [Google Scholar] [CrossRef]
- Dudek, P.; Piwowońska, J. Influence of Titanium on the Microstructure and Mechanical Properties of Foundry Zinc Alloy. J. Mater. Eng. Perform. 2022, 31, 9029–9038. [Google Scholar] [CrossRef]
- Feldshtein, E.E.; Dyachkova, L.N.; Patalas-Maliszewska, J. On Investigating the Microstructural, Mechanical, and Tribological Properties of Hybrid FeGr1/SiC/Gr Metal Matrix Composites. Materials 2021, 14, 174. [Google Scholar] [CrossRef]
- Ning, Y.; Fu, M.W.; Hou, H.; Yao, Z.; Guo, H. Hot deformation behavior of Ti–5.0Al–2.40Sn–2.02Zr–3.86Mo–3.91Cr alloy with an initial lamellar microstructure in the α + β phase field. Mater. Sci. Eng. A 2011, 528, 1812–1818. [Google Scholar] [CrossRef]
- Wu, Q.; Li, S. Alloying element additions to Ni3Al: Site preferences and effects on elastic properties from first-principles calculations. Comput. Mater. Sci. 2012, 53, 436–443. [Google Scholar] [CrossRef]
- Xiang, C.; Liu, Y.; Liu, B.; Ca, O.Y.; Gan, Z. Characterization of hot deformation behavior of Ti–3Al–5Mo–4.5V alloy with a martensitic starting microstructure. J. Micromechanics Mol. Phys. 2017, 2, 1750011. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Gao, W.; Huang, Z.; Yang, Y.; Li, Z.; Yan, M.; Fu, Y.-D. First-principles analysis on the nitrogen adsorption and diffusion in Ti alloy towards clarified diffusion mechanism in nitriding. J. Mater. Res. Technol. 2022, 21, 1479–1489. [Google Scholar] [CrossRef]
- Stenczel, T.K.; El-Machachi, Z.; Liepuoniute, G.; Morrow, J.D.; Bartók, A.P.; Probert, M.I.J.; Csányi, G.; Deringer, V.L. Machine-learned acceleration for molecular dynamics in CASTEP. J. Chem. Phys. 2023, 159, 044803. [Google Scholar] [CrossRef]
- White, J.A.; Bird, D.M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys. Rev. B Condens. Matter 1994, 50, 4954–4957. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wang, Z.; Zong, Z. Generalized differential transform method to differential-difference equation. Phys. Lett. A 2009, 373, 4142–4151. [Google Scholar] [CrossRef]
- Broyden, C.G. The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA J. Appl. Math. 1970, 6, 222–231. [Google Scholar] [CrossRef]
- Mayorga, R.V.; Quintana, V.H. A family of variable metric methods in function space, without exact line searches. J. Optim. Theory Appl. 1980, 31, 303–329. [Google Scholar] [CrossRef]
Adsorption Surface | Physical Adsorption Energy (eV) | The Energy Required for Adsorption State Transition (eV) | Chemisorption Energy (eV) |
---|---|---|---|
Fe | −1.0083 | 0.9984 | 8.4872 |
Fe-Mn | −0.9478 | 0.0919 | 8.4117 |
Fe-Cr | −0.8355 | 0.1470 | 8.5174 |
Fe-Ni | −0.7188 | 0.2041 | 8.1252 |
Fe-Mo | −0.7023 | 0.3417 | 8.1557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, Q.; Jiang, P.; Liu, Y.; Zhao, C.; Dong, Y. Effects of Alloying Element on Hydrogen Adsorption and Diffusion on α-Fe(110) Surfaces: First Principles Study. Metals 2024, 14, 487. https://doi.org/10.3390/met14050487
Zhang L, Zhang Q, Jiang P, Liu Y, Zhao C, Dong Y. Effects of Alloying Element on Hydrogen Adsorption and Diffusion on α-Fe(110) Surfaces: First Principles Study. Metals. 2024; 14(5):487. https://doi.org/10.3390/met14050487
Chicago/Turabian StyleZhang, Luying, Qingzhe Zhang, Peng Jiang, Ying Liu, Chen Zhao, and Yuhang Dong. 2024. "Effects of Alloying Element on Hydrogen Adsorption and Diffusion on α-Fe(110) Surfaces: First Principles Study" Metals 14, no. 5: 487. https://doi.org/10.3390/met14050487
APA StyleZhang, L., Zhang, Q., Jiang, P., Liu, Y., Zhao, C., & Dong, Y. (2024). Effects of Alloying Element on Hydrogen Adsorption and Diffusion on α-Fe(110) Surfaces: First Principles Study. Metals, 14(5), 487. https://doi.org/10.3390/met14050487